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PERSPECTIVE

What is the fundamental (or key) feature (property) of QM that

sets it distinctly apart from classical physics enabling beautiful

(technologically revolutionary) information processing tasks ?

Character of measurements: Incompatibility of
measurements, Contextuality....



Quantum entanglement is a powerful resource.....

... but there exist Quantum Communication tasks without entanglement

e.g., in prepare and measure scenarios (QKD without entanglement)

z; € [d;]
mlmz LR :Bn

|

Q: What causes advantage in Quantum Communication tasks without entanglement ?

A: Measurement Incompatibility; Contextuality
(character of quantum measurements)



Outline

* What do we mean by measurement incompatibility ?

Quantum communication tasks — RAC games

Measurement incompatibility is necessary for Quantum Advantage in Communication

Incompatibility in practical scenarios

Operational witness incompatibility in DI and semi-DI protocols

Quantum contextuality & communication complexity advantage



Measurement Incompatibility

* Incompatible measurements: Cannot be performed simultaneously on a
single copy of a quantum system [e.g., position & momentum of a QM
particle with arbitrary precision]

* MI differentiates QM from classical physics

* Quantum Measurement Incompatibility is at the root of fundamental
guantum aspects, e.g., Bell-nonlocality, EPR steering, quantum contextuality,
guantum violation of macrorealism, temporal & channel steering.....



Measurement Incompatibility

* Ml is necessary but not sufficient for Bell violation [Brunner et al.,, PRA 97, 012129
(2018)]

Ml is both necessary and sufficient for steering [Brunner et al., PRL 113, 160402
(2014)]

Ml in communication tasks without entanglement, e.g., state discrimination
[Carmeli et al., PRL 122, 130402 (2019)]

* MI both necessary and sufficient in state discrimination task in prepare and measure
scenario (1-sided Device Independent protocol) [Cavalcanti et al., PRL 122, 130403
(2019)]



Q: Is there any generic link between Ml and non-
classical correlations ?

Ans: Yes, in prepare & measure scenarios without
entanglement

Operational Witness of Ml for any set of Quantum
Measurements of arbitrary setting



Measurement Incompatibility

Consider general POVM

y € [n] : choice of measurements by : outcomes of measurements
K o= {1,...,k)

A set of measurements {E,}, IS compatible if
there exists a parent POVM {Gy : Gx > 0Vk, ), Gy =1}

such that Vb, v, Mby|}f = ZP};(byl'}{)GK Py(by|x) > 0 Yy, by, «; Zﬂf(by‘g) =1 Vy,«
K by

Marginals of parent POVM {G«} give rise to individual measurement effects {Mbyh;}by,y



Communication tasks in prepare-and-measure scenario

Random Access Code (RAC) games
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(Color onling) The sketch of 2 — 1 quantum random access code. Alice encodes her randomly chosen 2
classical bits a € {00, 01, 10, 11} into 1 qubit pa and sends it to Bob. To decode the required bit, Bob performs
zome measurement on the received gubit depending on his input bit y € {0, 1} with the measurement results
denoted as b € {+1, -1} (which in the computational basis can be represented by b £ {0, 1}).

Acknowledgement: https://www.researchgate.net/figure/Color-online-The-sketch-of-2-1-quantum-random-access-code-Alice-encodes-her-randomly_figl 228325435



Quantum random access codes <:> Non-classical temporal correlations
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Role of nonclassical temporal correlation in powering quantum random access codes
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We explore the fundamental origin of the quantum advantage behind random access code. We propose new
temporal inequalities compatible with noninvasive-realist models and show that any nonzero quantum advantage
of n+— 1 random access code in the presence of shared randomness is equivalent to the violation of the
corresponding temporal inequality. As a consequence of this connection, we also prove that the maximal success
probability of n + 1 random access code can be obtained when the maximal violation of the corresponding
inequality is achieved. We further show that any nonzero quantum advantage of n — | random access code, or
in other words, any nonzero violation of the corresponding temporal inequality, can certify genuine randomness.

DOI: 10.1103/PhysRevA.106.042439

...... common role of measurement incompatibility



Incompatibility is necessary for quantum advantage in communication tasks

Consider communication task (general RAC) x € |l]and y € [n]

T; € [df]
Alice receives input x T1Ty - Tp y € [n]

|

M,y }s,,
-1 —> ) s
Bob receives input y and the message by =z,
by € [d,]

She sends a d-dimensional classical
or quantum system to Bob

| o

He outputs b, € [d,]
Outcomes determined by probability {7(ty|x,v)}




Probability distributions in RAC game (different probabilities in different theories)

e Classical communication using pre-shared randomness

| dA
mzl / A)py(Byly,m, A)
)}
— Z{Pb(b ! ) =1
m by

* Quantum communication with pre-shared randomness

p( y |-

) = A (M) Tr (pMME}yw) A\, pups My € B(T)

Quantum state sent by Alice: {¢x1} upon input x and random variable A
Measurement made by Bob: {My,,,1} for input y and random variable A



Probability distributions in RAC game
* Quantum communication without pre-shared randomness

_ TI'('O,TME;?WL 'O'T’Mbyhf € B((Ijn’)

p(by|x,

Communication scenario specified by a set of natural numbers
l,h',, and :’I: {dl,--* ,d”} such that X & [”, Y =~ [”]; by = [dy]

Different sets of probabilities obtainable by d-dimensional communication:
* Classical :
)}

ﬂ' —{P

(for compatible measurement set

Y)}

d T {p
( Q:f = {p(by|x,1

for compatible)

)}

 Quantum without shared randomness: Q; := {p(by|x,



Measurement incompatibility is necessary for guantum advantage
(with or without shared randomness)

—

. . . o —( ~
* Result: Given any scenario specified by (I, n,d), Q; C Q5 =¢y

Proof: 15t relation @E C Qg follows from the definition of the two sets
Proof of 2" relation:

Consider, Bob performs POVM measurements {G,} (parent POVM of the set {Mbyh;,;x} )
Frenkel-Weiner theorem [Comm. Math. Phys. 340, 563 (2015)]:

For a single quantum measurement on a d-dimensional quantum state,

the set of input-output probabilities p(K[X) can always be reproduced

by suitable classical d-dimensional communication with shared randomness.
x,A,A), pp(k|m, A), such that

Hence, Vo, ) there exists a classical strategy ﬁ(?\), P (m

X, A, A)py (x|, A) dA

d
Tr(peaGe) = Y [ A(R)pa(m

m=1



Measurement incompatibility is necessary for quantum advantage
(with or without shared randomness)

* Proof (i) Arbitrary probability distribution P( X,y) € Q obtainable from compatible set of
measurements can always be reproduced by a swtable cIa55|caI strategy:

Consider arbitrary set of probability distributions arising from set of compatible measurements by

Bob (B
p(bylx,y) € Qg p(bylx,y) = AH(A)TI‘ (P:c,ﬂMb_” y,ﬁt) dA

There exists a parent POVM {Gc}  s.t. Yoy, y, A, My, yr =) Pyalbylx) G
Hence, | "
/ (ATt (pup M, 0 ) dA - = 3 / Py A (by|6) 7T (A) Tr (03 A Gi) dA

Now, applying Frenkel-Weiner result, = Z[ / A(A)pa(ml|x, A, A) (ZHf,fa(f?;;lx)pb(x|m,i)) dA dA

mn

= Z/ / A(A) pa(mlx, A, A) py(byly, m, A, A)dAdA € Ca
_oom
Thus, Qg C Cy.

Proof (ilLOn the other hand, any classical strategy can always be realized by a quantum strategy with
compatible measurements, i.e., C; C QC
d Qd' = Cy L]

[Saha, Das,...., ASM, PRA 2023)] Hence, the sets are identical



Measurement incompatibility is necessary for guantum advantage in communication
tasks

Figure of merit in any communication tasks is a function of the probabilities p(by‘x, V)

Any quantum advantage in such tasks can be attained (with or without shared randomness) only if the set of
measurements is incompatible.

[Saha, Das,...., ASM, PRA 2023)]

Generic relations among the various
probability sets

@d is not a subset of Cy4

@dc is a subset of both Cj and Q;

- _C L -
(CaNQy)\Qy # 9 Qdc is not the intersection

Measurement incompatibility is not sufficient for quantum advantage without pre-shared randomness
[Chaves, et al., PRX Quantum 2, 030311 (2021)]



(Semi-Device-Independent) Withess of Measurement Incompatibility

Recap of the scenario 2 € [di]
:1:1:-'32 y € [n]

n measurements, defined by {M, |,} v € [n]

Measurement Y has d, outcomes, b, € [d] S ) (s
;B(C“}
Alice gets a string of ndits X = X1X2 - Xy by=wy
b, € [d,)]

randomly from the set of all possible strings x, € [dy]
Alice communicates a d-dimensional classical or qguantum system encoding her information

Bobh’s task is to guess the y-th dit when y is chosen randomly
[Saha, Das,...., ASM, PRA 2023)]



Incompatibility withess for any set of measurements of arbitrary settings

For the generalized RAC game, figure of merit (average success probability):

—

S(n,d,d) = HHMJZP by = xy|x,y)

Result:  Given any scenario specified by (I, n, d), the maxi-
mum values of any linear function of {p(by|x,y)} obtained
—y . —C
within the three different sets Cg, Qdc, and Q4 are the same.

. —L
maximum value over C , QE and Q,; are the same

— — —_—

Sc(n,d,d) = max S(n,d,d) = max S(n,d,d)
{p(by|xy)teCy {p(by|x,y)}€Q§



Incompatibility witness for any set of measurements of arbitrary settings

Classical (or compatible quantum measurements) bound for

d < mind,
Y ‘

. 1 d max "
S{" }'j}'d — i C} '
(n,d,d) HHH%ZKH n}) I,jnlfi_ﬁd{m}}
Amax _ ﬁi(ﬂ—l)*<ﬂi—ﬂ+l)
n=ki— Y om, Cy =10 i,
b f:_;zﬂ B njnj—1)---1

In order to witness measurement incompatibility, one needs to know S.(1, d, d)

Whenever a set of measurements in the scenario specified by 1, d, d gives

S(n,d,d) > S.(n,d,d)

in the generalized RAC game, we can conclude that the measurements are incompatible



Incompatibility witness (limiting cases)

Dimension of the system is upper bounded by number of outcomes: d < min,d,

Consider all measurements have same number of outcomes: d, = d

* Forn=2(e.g.,, 2—1RAC): S.(2, d d) = 2;2 (d 1 2dd — dz)

d

* Forn=3(e.g.,, 3+ 1 RAC): S.(3,d,d) = —
- B d) =35

(dz —1+3d(d+1— d))

* Result: Any set of three incompatible rank-1 projective measurements

yields larger value than Sc(n = 3,d = 2,d = 2) = 3/4

* (recovers earlier results [Heinosaari et al., EPL 130, 50001 (2020)];
[Horodecki et al., Phys. Rev. A 101, 052104 (2020)]



Measurement Incompatibility: Practical scenario [Das,..., Saha..., ASM, arXiv: 2401.01236]

e

N

Measurement devices are imperfect: &
——— -
f ABJ'—
* Coarse-graining of outcomes %3& Wit N,
@ S
Shaped magnets create an
Inhamegenaus magnetic fied
e Convex mixing of measurements o g ..,
b=, S - Al
0, =y F.f= OxNy+ Oyly + 0zN; o~ S y
3 5

* Environmental/device noise



Measurement Incompatibility: Operational approach [Das,..., Saha..., ASM, arXiv: 2401.01236]

e Coarse-graining of outcomes: ! ﬁ |

Modified set of measurements M; |, = ) cx(Zx|z) My,
Z

e o - - -

* Convex mixing of measurements:

______________________

: e
M = {M:};,N = {N:};, R = 1Rz} | 4 5
eTatats

Q M,N) — {qu+ (1_Q)Nz}z : ey
o ELRAN .
Even if R is incompatible with M and N separately,

R is not necessarily incompatible with Q(M,N) S | B |



Definitions

Definition 1 (Fully incompatible measurements w.r.t.
coarse-graining). A set of measurements { M., } is fully in-
compatible w.r.t. coarse-graining if they remain incompatible

after all possible nontrivial coarse-graining.

Definition 3. Three measurements M, N and R are fully in-

compatible w.r.t. disjoint-convex-mixing if each of the pairs,
Mand Qy gy, N and Qpq gy, R and Q ), are incompat-
ible for all values of g

Definition 5 (Fully incompatible measurements w.r.t.
disjoint-convex-mixing). A set of n measurements is
fully incompatible w.r.t. disjoint-convex-mixing if it is k-
incompatible forallk =2,--- , n.

Definition 2 (k-incompatible measurements w.r.t.
coarse-graining). A sef of measurements {M,,} is
k-incompatible w.r.t. coarse-graining if they remain incom-
patible after all possible nontrivial coarse-graining that gives

rise to at least k outcome measurements.

Definition 4 (k-incompatible measurements w.r.t. dis-
joint-convex-mixing). Given a set of n measurements, the
measurements are k-incompatible w.rt.  disjoint-convex-
mixing if, after taking every possible disjoint-convex-mixing
that yields k number of measurements, the resulting measure-
ments are incompatible.



Theorems [Das,..., Saha...,, ASM, arXiv: 2401.01236]

Theorem 2. If three-qubit measurements (15) are such that

Theorem 1. The following condition is necessary but not
suﬁ%iant fnr troo rank-one projective measurements ﬂf dimen-

sion = 4, defined by {|¢;) } and {|¢;) }, to be fully incompat-
ible w.r.t. coarse-graining:

($il¢j) # 0, Vi, j.

However, the above condition is necessary and sufficient for
two 3-dimensional rank-one projective measurements.

Theorem 3. Consider three-qubit measurements (15) are
such that iy = v, 1y = wf, Hy = 12 with 0 <
Vo, V1, Vo < 1, that is, the noisy version of Pauli observables,

14(=1)%0,
M: =5 (1+ (—1)*0) = 1 (il]ﬁt) +(1— 1’[}]%,
14(~1)%0
Nz = % ( 1)21’;1[}'.':5) =1 (HTM) _|_ (1 — y,l)%!
s = 11+ (1)ne) = (HEEE) + (1-w),

with z
w.r.t. disjoint-convex-mixing if and only if

i; are in the same plane of the Bloch sphere, then they are not
fully incompatible w.r.t. disjoint-convex-mixing.

Mzzl(-ﬂ+(_1:‘3 4{1"5?] = = 01
NEZE(.I].‘l'( 1}3 _*]_ [_:-r"}
R.=3(1+(=1)%m-7)

= 0,1. These measurements are fully incompatible

12,2 2.2 2.9
Vs 2 Vgl 2 Vgl
vy +

min < 1 —l——v + =, ———r >1
{” v-l—v 1 v%—l—v% L’%-I—vi?}



Device-independent operational witness of incompatibility Possible

CG
Projective measurements of Alice (3-outcome rank-1 projective in 3 : Ch?;fm AST | ASg |Incompatible
. T Ay | Ay
a ex + g A,{[ = ae 1,2
&), \/’ Z P( 3/ )) ila Hedaal 1.2y onlolo126[0122]  yes
Projective measurements of Bob: ¢ € {0, 1,2}, a1 = 0,00 = 5 ©1)d.2) 0 | 0 ?
) (0,1)((0,2)|0.126|0.122 yes
)5 = —= Y exp (ﬂz_”j(_q + ﬁb)) g Be={lmss} 7 €{01,2},p1=1gp2=—73 (1,2)/(0,1)|0.126/0.122) _ yes
V35 3 (1,2)(1,2)[0.126]0.122 yes
give maximum violation of CGLMP inequality gi; Egﬂ g g :
CH functional -1<5<1, 02)](1,2)[0.126/0122]  yes
(

0,2)(0.126|0.122 yes

S = P(00|Ay,B1) + P(00|A1, B2) + P(00| A3, By) ©.2)
—P(00] A2, By) — P(0[Aq) — P(0]|B2).

Phase  Intensity Desired |88 08

Coarse-graining of outcomes:

(0,1)=0and2=1 for A1 and A2; (0,1) =0 for B1 and B2 & ¥

Laser BBO IF L,

) = 0.596] +1)4| —1)5 +0.529] +2) 4| —2)p +0.604| — 1) 4| + 1)3

Phase  Intensity  Desired

CGLMP experiment with Orbital angular momentum m . SLM A

entanglement



Semi-device-independent witness of incompatibility

RAC tasks -- (2,d,d) Alice gets 2-dit string input message (x1,x2) with x1,x, € [d],

and communicates d-dimensional system to Bob

If ant two POVMs with d outcomes acting on (@

Pd) < Pes(2d) = 5 (1+ 5 )
are jointly measureable, average success probability: d

Theorem 4. Two 3-outcome rank-one projective measure-

ments, M = {|¢o), |$1), |¢2) } and N = {[¢o), [¢1), [¢2) },

can be witnessed to be fully incompatible w.r.t. coarse-

graining via RAC if and only if0 < |{(¢;|y;)| < z, Vij=  Theorem 5. Three noisy Pauli measurements of Eq. (19)

0,1,2 with equal noise (v = vy = v1 = vy) are witnessed to be
fully incompatible w.r.t. disjoint-convex-mixing via RAC if
and only if V2/3 < v < 1.



Communication without entanglement

Role of Contextuality =«

** There is no probability distribution in agreement with marginal distributions
corresponding to jointly measureable observables

(*)Contextuality can be formulated independently of existence of incompatible measurements.
[Selby et al., PRL 130, 230201 (2023)]



What is contextuality ?

Properties

« An attributive property is a constant property of an object
which can be observed and measured at any time and
which is not modified by the measurement.

Example: rest mass, electric charge

« A contextual property is a property revealed only in a
specific experiments or under particular conditions and
characterizes the interaction of the object with the
external world or a measuring apparatus. Color of the
chameleon, weight, spin projection and "probability

Marian Kupczynski



Applications of Contextuality....

* Quantum state discrimination
[Schmid, Spekkens, Phys. Rev. X 8, 011015 (2018)]
* Robust self-testing
[Bharti et al., Phys. Rev. Lett. 122, 250403 (2019)]
* Quantum computation
[Howard et al., Nature 510, 351 (2014)]
* QKD based on Contextuality monogamy
[J. Singh, K. Bharti, Arvind, Phys. Rev. A 95, 062333 (2017)]
* Preparation Contextuality in parity oblivious multiplexing

[Spekkens, et al., Phys. Rev. Lett. 102, 010401 (2009);
S. Ghorai, A. K. Pan, Phys. Rev. A 98, 032110 (2018)]
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Quantum Contextuality Provides Communication Complexity Advantage
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Despite the conceptual importance of contextuality in quantum mechanics, there is a hitherto limited
number of applications requiring contextuality but not entanglement. Here, we show that for any quantum
state and observables of sufficiently small dimensions producing contextuality, there exists a commu-
nication task with quantum advantage. Conversely, any quantum advantage in this task admits a proof of
contextuality whenever an additional condition holds. We further show that given any set of observables
allowing for quantum state-independent contextuality, there exists a class of communication tasks wherein
the difference between classical and quantum communication complexities increases as the number of
inputs grows. Finally, we show how to convert each of these communication tasks into a semi-device-
independent protocol for quantum key distribution.

DOI: 10.1103/PhysRevLett.130.080802



Contextuality withesses

Set of events in contextuality experiment: {eitiiy

Define n-vertex graph G where each event is represented by a vertex, and

Exclusive events correspond to adjacent vertices, e.g. 5-vertex graph

Event e; is represented by projector II; (exclusive events “ orthogonal projectors)

n
W = Z ‘W{*P(Ef), Wi 2 O n
= Z witr(pIl;) > a(G.,w)

i=1
- . . P , LR
a(G.w) : largestvalue of > .c; Wi, |I:subsets consisting of W= {H'f}_f‘:l

Contextuality witness

for quantum realization II; and state /£ such that

(Independence number) non-adjacent vertices

H

Given W, one can find a non-contextuality inequality: Quantum value : Z witt (pIT;)

i=1

Upper bound for non-contextual models: a(G.,w)



State independent contextuality witness

H

watr(pflf) > a(G,w)

P of contextuality witness for dimension d, if

is a state independent quantum realization

there is a quantum realization {I1;}? , of {e;}",
such that

watr(pflf) > a(G,w) holds YV p € O(C? (setof quantum
=1
states in C? )
split all projectors into rank-1 to obtain  {(G,w), {|w;){(vil}"_. P}

satisfying witness condition



One-way communication complexity

z €{0,1,---,8} ye{1,---,8)
8
CC: amount of communication : . r I
. . . 2 > . ':.5 0o_._1
required for tasks involving Q |:>6‘:1‘Q_:.}_ — D (A
: __
. 3 4 3 4
two parties I,
Alice, receives a random input x € X z= f(z,y)
Alice sends a message (classical or guantum) G ™ (

to Bob. Bob receives random input y €Y

Using y, and message received from Alice, Bob outputs z: Bob’s guess about function f(x,y)

Figure of merit of communication task: ¢ _ Zr(‘x‘ Vp(z = flx,v)] y), Doy txy) =

X,V
2 benchmarks: (I) Maximum value of S with (classical or guantum) dimension d

(11) Minimum dimension required (classical or quantum) to achieve a

certain value of S



Communication complexity advantage based on contextuality witness

Result: If classical system is communicated between Alice and Bob:

ntk G ) G
n EEE) 4k

= . l I -
E;[GWIE” i: L.(;‘EGWE.’;I :E |i” { k { ;|NI| { ['II:{;.. H:} — 0

J : minimum number of improperly colored vertices of (G when d colors are used
N

X

]

. set of vertices that are adjacenttoxin G

Reverse statement holds under an additional assumption:

Contextuality can be certified from communication complexity
S. Gupta, D. Saha, Z.-P. Xu, A. Cabello, A. S. Majumdar, Phys. Rev. Lett. 130, 080802 (2023)



Increasing advantage in communication complexity

Contextuality witnesses for y(G) > din (equality problem)

1 n o n
implified §G — — N=n+) i INy
smoites 59 =2 (3 ple = Oy =0+ Y- 3 ple = tley) Xt IV

version x=1 yeN,
Minimum dimension of quantum system Q(G) or classical system C(G)

in order to achieve GG _ |

G™ :mtimes G; Xy fractional chromatic number

Result:  C(G™) . ()(f(G)

) . formeN

Q(Gm) dmin d
min : minimum dimensions in which
C(Gwd) . l i)d r .
For particular example Q(Gy,) — d (1.99 L(G* W)* {|yf.i> <yf |}z_l ,0}
(equality problem) is a contextuality witness

Gap between classical and quantum complexities can be very large !



Gap between classical and quantum communication complexities: examples

TABLE I. In order to compare the quantum advantages origi-
nated from various SI contextuality witnesses, we have taken the
value of m for each set such that 200 qubits 1s sufficient to
accomplish the respective equality problem. With respect to that,
the lower bounds on the classical and quantum ratios have been
obtained for various SI contextuality witnesses.

SI witness C(G™)/Q(G™) from Eq. (13)
with n dyin  x7(G) so that d. ~ 200 qubits
YO-13 [25] 3 35/11 >6x 1013

Peres-33 [47] 3 13/4 >4 x 1013

CEG-18 [48] 4 9/2 > 3.4 x 107
Pauli-240 [49] 8 15 > 1.9 x 10'®
Pauli-4320 [49] 16 60 > 5 x 10%8

x¢(G) is the fractional chromatic number of G 77(G) <x(G)

S. Gupta, D. Saha, Z.-P. Xu, A. Cabello, A. S. Majumdar, Phys. Rev. Lett. 130, 080802 (2023)



Quantum Measurements Drive Quantum Communication (summary)

D. Saha, D. Das, A. K. Das, B. Bhattacharya, A. S. Majumdar, Phys. Rev. A 107, 062210 (2023); S. Gupta, D. Saha, Z.-P. Xu, A. Cabello,
A.S. Majumdar, Phys. Rev. Lett. 130, 080802 (2023); A. K. Das, S. Mukherjee, D. Saha, D. Das, A. S. Majumdar, arXiv: 2401.01236.

Ml is fundamental quantum resource for non-classicality in communication tasks

 Violation of classical bound of any communication tasks is sufficient to witness measurement
incompatibility

* Operational approach towards classifying incompatibility under: (i) Coarse-graining of outcomes, (ii)
convex mixing of measurements, (iii) environmental noise

* Any quantum state and observables in producing contextuality h quantum advantage in
communication

* As the number of inputs increases the ratio between classical and quantum complexities increases
polynomially — significant for equality problems in Comp. Science applications

* Future directions: More efficient (optimal) MI witnesses; Witnesses for incompatible channels and
instruments; applications in equality problems with more than two parties, etc.
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Semi-device-independent QKD protocol and its

security using monogamy of contextuality witnesses



Semi-device-independent quantum key distribution

Protocol:
After large no. of runs Alice randomly choses some runs and publicly announces her input x

Bob verifies that the figure of merit is greater than S{.

( Coe
Bob publicly announce his input y for the remaining runs 0. ify=x.
flx,y)=<1, if yeN,,
Alice notes down  f(x,y)  asthe shared key 0, ifye{l,...nfandx=0

Transmission unsuccessful when Y % {.)C,NX} or VE {” T 1& N k} and x=0

S. Gupta, D. Saha, Z.-P. Xu, A. Cabello, A. S. Majumdar, Phys. Rev. Lett. 130, 080802 (2023)



Security of QKD protocol

Monogamy between two contextuality witnesses [Ramanathan et al. PRL 109, 050404 (2012)]
n i
S wittp(IL @ 1)] + > witrlp(1 @ 11,)] < 2a(G. W)
i—=1 =1

Even if Eve shares arbitrary correlations with the preparation device of Alice,

> wypp(0fx =0.y) +> w,pp(0lx = 0,y) < 2a(G. W)
y=I1 y=1

—

(G.w.d)
Hence, SB -+ SE < QSC
q S(G,ﬁ",d)
Protocol is secure when Alice-Bob attain quantum advantage dp =~ D¢

Key rate: r:](A:B)_I(A:E)






Mutual information === mutual dependence between two variables

Pixy)(z,
069 - 5 P 22200

el ze &

In terms of conditional and joint entropies:

I(X;Y) =H(X) - H(X|Y)

=H(X,Y)-H(X|Y)-H(Y | X)



Communication tasks in prepare-and-measure scenario

Generalized RAC games

X = Xg,X1, -, Xn-1 € {0,1} y€{01,..,n—1}

! !

Px
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Probability is a “contextual
property” of a random experiment

The probability pij is neither a property of the coin nor the
property of the flipping device D].It characterizes only a
particular random experiment: Flipping Ci with a device
Dj.

Flipping Pij
. device HorT
Dj

Marian Kupczynski




Experimental contexts

In QM one has conditional probabilities:
P(A=a)=P(A=a|C) where C is a context of the
experiment in which A Is measured

Pure state preparation: @ vector in Hilbert
space

Observable measured A : A self adjoint
operator

Experimental setup to measure A: A

E(A) =E(AIC)= E(A| y. A) =(w, A y)

Marian Kupczynski




Local realism versus contextuality

* Local realism or counterfactual definiteness
(CDF): measuring devices register values of

physical observables existing independently
whether they are measured or not.

« Contextuality: the values of contextual physical
observables such as a spin projections are
created in the interaction of the physical system
with the measuring apparatus and they do not
exist before the measurement

Bell-nonlocality produced by contextuality of spatially separated
entangled systems



Quantum contextuality — simplest example [Peres-Mermin (PM) square]

Nine measurements arranged in a square A B C
Each measurement is dichotomic: +1 or -1 a b c
a p oy

Assume 3 measurements in each row and

ABC. abc.afy. Aaa, Bbp, C
column forms a “context” { abc, afly, Aaa, Bbp, Ccy}

_ _ (ABC) = Prob[ABC = +1| — Prob|[ABC = —1]
Classical value assignment (“non-contextual”):

(there can be only an even number of

Products with assigned value +1) (PM) = (ABC) + (abc) + (afly) + (Aaa) + (Bbp) — (Ccy) < 4

A B C 0.1 1®o0. o0.Qo0,
Quantum example with 2 spin-1/2 particles a b ¢c|l=|1®06 06,01 o Qo
a p vy 6.0, 06,80, 0,0,

(ABC) = (y|ABC|y) (PM) =6

QM violates non-contextual (classical) inequality



Quantum contextuality in practice

Implementation of PM square requires performing incompatible measurements on qubit
Non-contextuality inequalities in state-dependent scenario:
minimum dimension to witness contextuality isd =3
(e.g., violation of KCBS inequality [Klyachko et al., PRL 101, 020403 (2008)])
Scenario defined by 5 measurements

KCBS inequality: (ApA1) + (A142) + (ArA3) + (A3A4) + (A4A) 2 -3



Quantum contextuality (Kochen-Specker proofs)

e Spectral decomposition says:
observable A = Z AaIl, where I1, is a projector onto A\, eigenspace.
a

y

[A,B] =0 ...compatible
e Consider B, C such that ¢ [A,C] =0 ...compatible
|[B,C]#0 ...incompatible

Commuting/compatible observables can be jointly /sequentially
measured without mutual disturbance: ABAAB — Ao A\pAgAa\p €tC
Free to measure A then decide whether to measure B or C'.

e Born rule says Prob(a|v¢) = ||II4|)||?

e Natural(?) to have a mental model whereby quantum state |¢))
possesses a value v(A) € {\,} revealed by measurement of A
(irrespective of context)

hidden-variable model

A measured=k output Ay
B measured= output iy

C measured= output 2

KS proof: Logical impossibility proof of value assignment
Acknowledgement: Mark Howard



Quantum Contextuality (state-dependent)

e {II;} corresponds to a set of yes/no propositions

e In QM represent II; by projectors with A\(II;) € {1,0}

e Commuting rank-1 II; «» mutually exclusive propositions

e Construct orthogonality /exclusivity graph T’

e Define sum-of-projectors operator X = Z 11
el

(Er)max © = a(T), (Tr)dax < I(T)

max —

o) =2, I(I)=+v56~224

A. Cabello, S. Severini and A. Winter.

“(Non-)Contextuality of Physical Theories as an Axiom”
arXiv:1010.2163.



Discrimination of quantum state

Fundamental to the theory of quantum communication

The question is:
How can we best discriminate between a known set of states |i;),

each having been prepared with a known probability p; ?

A general measurement (POVM) is generally the best approach
However, the “optimality of a measurement” is relative to the problem

Minimum-error Optimization of
discrimination Mutual information

Allow our measurement Exists a necessary and Has only a necessary
to have inconclusive sufficient condition condition

results @
\':

If not inconclusive, itis In general, one does not apply the other!
always correct!

(i.g. Tetrahedron states of Assignment 2)
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Robust Self-Testing of Quantum Systems via Noncontextuality Inequalities

Kishor Bharti,' Maharshi Ray,' Antonios Varvitsiotis,” Naqueeb Ahmad Warsi,'
Adén Cabello,” and Leong-Chuan Kwek'™*’

'Centre for Quantum Technologies, National University of Singapore 117543, Singapore
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*'}| (Received 8 January 2019; revised manuscript received 3 June 2019; published 26 June 2019)

Characterizing unknown quantum states and measurements 1s a fundamental problem in quantum
information processing. In this Letter, we provide a novel scheme to self-test local quantum systems using
noncontextuality inequalities. Our work leverages the graph-theoretic framework for contextuality
introduced by Cabello, Severini, and Winter, combined with tools from mathematical optimizaton that
guarantee the unicity of optimal solutions. As an application, we show that the celebrated Klyachko-Can-
Binicioglu-Shumovsky inequahty and its generalization to contextuality scenanos with odd n-cycle

compatibility relations admit robust self-testing.

DOI: 10.1103/PhysRevLett.122.250403



ARTICLE

doi:10.1038/naturel3460

Contextuality supplies the ‘magic’ for
quantum computation

Mark Howard"?, Joel Wallman?, Victor Veitch®? & J oseph Emerson’

Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in
quantum computing has remained elusive. Here we prove aremarkable equivalence between the onset of contextuality
and the possibility of universal quantum computation via ‘magic state’ distillation, which is the leading model for exper -
imentally realizing a fault - tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which
precludes a simple ‘hidden variable’ model of quantum mechanics, provides one of the fundamental characterizations of
uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum
information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known
to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these funda-
mental issues, this work advances the resource framework for quantum computation, which has a number of practical
applications, such as characterizing the efficiency and trade -offs between distinct theoretical and experimental schemes
for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quan-
tum algorithms.
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