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We investigate the joint measurability of incompatible quantum observables on ensembles of parallel and
antiparallel spin pairs. In the parallel configuration, two systems are identically prepared, whereas the antiparallel
configuration pairs a system with its spin-flipped counterpart. We demonstrate that the antiparallel configuration
enables the exact simultancous prediction of three mutually orthogonal spin components—an advantage unattain-
able in the parallel case. As we show, this enhanced measurement compatibility in the antiparallel configuration
is better explained within the framework of generalized probabilistic theories, which allow a broader class of
composite structures while preserving quantum descriptions at the subsystem level. Furthermore, this approach
extends the study of measurement incompatibility to more general configurations beyond just the parallel and
antiparallel cases, providing deeper insight into the boundary between physical and unphysical quantum state
evolutions.
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Classical World Quantum World

» In Quantum world, however, the
complementarity principle holds.

There are certain pairs of

complementary  properties that
% cannot all be observed or measured
object

simultaneously.
Property-1: Shape . A » First, pointed out by Niels Bohr’s in
Property-2: Colour 3¢ e I1t9?7 at the Como Conference in
aly.

I

¢ N. Bohr, The Quantum Postulate and the Recent Development of
Atomic Theory, Nature 121, 580-590 (1928).

¢ De Gregorio, Bohr’s way to defining complementarity, Stud. Hist.
Philos. Sci. B 45, 72—-82 (2014).




Complementarity: Example
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Quantum optical tests of complementarity e qu—
Marlan O. Scully, Berthold-Georg Englert & Herbert Walther e ference trhges

FIG. 3 Two-slit experiment with atoms. A set of wider slits collimates two
atom beams which illuminate the narrow slits where the interference pattern
Simultaneous observation of wave and particle behaviour is prohibited, usually by the position-momentum originates. The collimation of the atomic beams would actually be done

. . . : : : using atomic optics. One could, for instance, employ six-pole fields operating
uncertalnty relation. Ngw detec_tors, constructed with the aid o_f modgrn guantum optics, provpde a way fthes o tha: Tagsotic: Toia oment: o b this cov 6F Riflery Stora B0
around this obstacle in atom interferometers, and allow the investigation of other mechanisms that the field-induced electric dipole moment. This set-up is supplemented by
enforce complementarity. two high-quality micromaser cavities and a laser beam to to provide which-

path information.

v" Non-commuting observables such as position and momentum, or
spin components along different axes [1-3]

1. E. B. Davies, Quantum Theory of Open Systems (Academic Press, 1976)
2. P.J. Lahti, Uncertainty and complementarity in axiomatic quantum mechanics, Int. J. Theo. Phys. 19, 789-842 (1980)
3. P. Busch, Indeterminacy relations and simultaneous measurements in quantum theory, Int. J. Theo. Phys. 24, 63-92 (1985)



Joint measurement of incompatible observables

v The development of generalized measurements, formalized via positive operator-valued measures
(POVMs), demonstrates that incompatible observables can, in fact, be jointly measured — albeit with
an inherent degree of fuzziness or imprecision [1-2]

1. P. Mittelstaedt, A. Prieur, and R. Schieder, Unsharp particle-wave duality in a photon split-beam experiment, Found. Phys.17, 891-903 (1987)
2. P.Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer Berlin Heidelberg, 1996)
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a __ 1
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Definition 1 (Busch et al. [11]). A set Sy := {Uﬁj,,\}fil
of N unsharp spin observables is jointly measurable if there
exists a POVM G = {m; > 0| Xz m7 = 1}, with outcome
stringsd = [ay,...,a N] such that each observable appears

as a marginal, i.e. P ’ = ):a-\a}. 7z for all j, where @ \ a;
}'f
denotes summation over all components except a -
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v The development of generalized measurements, formalized via positive operator-valued measures
(POVMs), demonstrates that incompatible observables can, in fact, be jointly measured — albeit with
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Definition 1 (Busch et al. [11]). A set Sy := {U'ﬁj’/\}fil
of N unsharp spin observables is jointly measurable if there
exists a POVM G = {m; > 0| Xz m7 = 1}, with outcome
stringsd = [ay,...,a N] such that each observable appears

as a marginal, i.e. P X A= ):a'\a,- 7z for all j, where @ \ a;

Spin Observables along X and
Y directions are compatible up-
to the sharpness value A=1/v2,
while observables along X,Y,Z

are compatible up-to A=1/v3
denotes summation over all components except a -
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Quantum incompatible: other facets

v More recently, measurement incompatibility has been shown to be
intimately connected to other nonclassical phenomena, such as Bell
nonlocality and Einstein-Podolsky-Rosen steering [1-2].

1. N. Brunner et al, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014)
2. R.Uola et al, Quantum steering, Rev. Mod. Phys. 92, 015001 (2020)
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v' Measurement incompatibility also plays a critical role in quantum
technologies, underpinning key protocols in quantum key distribution,
state discrimination, and randomness certification [3].
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Quantum incompatible: other facets

v More recently, measurement incompatibility has been shown to be
intimately connected to other nonclassical phenomena, such as Bell
nonlocality and Einstein-Podolsky-Rosen steering [1-2].

v' Measurement incompatibility also plays a critical role in quantum
technologies, underpinning key protocols in quantum key distribution,
state discrimination, and randomness certification [3].

v" This recognition has motivated a deeper exploration of incompatibility,
including scenarios involving multiple copies of a quantum system per
experimental run [4].

N. Brunner et al, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014)

R. Uola et al, Quantum steering, Rev. Mod. Phys. 92, 015001 (2020)

O. Giihne et al, Colloquium: Incompatible measurements in quantum information science, Rev. Mod. Phys. 95, 011003 (2023)
C. Carmeli et al, Quantum Incompatibility in Collective Measurements, Mathematics 4, 54 (2016)
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Multi-copy Quantum incompatible

v' Any pair of incompatible observables becomes jointly measurable with perfect sharpness
when two copies are available -- simply by measuring each observable separately.
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when two copies are available -- simply by measuring each observable separately.

v' The scenario becomes nontrivial
when more than two observables are
involved. For instance, given three
observables but only two copies of the I
state, a naive strategy would be to p(+1) p(f) p(+1) p(-1)

measure one observable sharply on
one copy and jointly measure the

other two unsharply on the second ‘
il 2 1

p(Jj, k) p(+1) p( 1)

Although, X measurement become sharp, the Y and Z observable can be measured up-to
the sharpness parameter value A = 1/1/2 [Busch’86]



Multi-copy Quantum incompatible

v' The aforesaid strategy introduces an asymmetry favoring the first observable. However,
Carmeli et al. showed that a more symmetric and efficient strategy is possible, one that
exploits entangled across the copies while constructing the joint POVM.
I " I

p(+f) pw /f”) p( 2
' lﬂﬂﬂﬂ 1 1

p(i,j, k) p(w p(-1)
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Definition 2 (Carmeli et al. [24]). The set of spin observables
Sy is said to be k-copy jointly measurable if there exists a
POVM G = {7tz € L((C?)®") |7tz > 0 & ¥; 77 = 19k}
on k copies of the system such that for all srates P and all

. N}, Tr[pi n’,,&] = Zﬁ\a Tl‘[p 77&']'

jeA{1,..

X, Y and Z observables become
two-copy compatible up-to the

sharpness parameter value
A=+V3/2

I'n 1'n
p(’+f) p(-1) /(H) p(’f)
S I

p(i,j, k) p(+1)  p(-1)

e
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Quantum incompatible: parallel vs antiparallel

v" We investigate whether such enhancements
persist -- or can even be improved -- when,
instead of two identical (parallel) spin states,
each experimental run involves one spin and
its flipped counterpart (an antiparallel
configuration).
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Analysis of the advantage in antiparallel case

v The framework of generalized probabilistic theories (GPTs) offers valuable insight.
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Analysis of the advantage in antiparallel case

v The framework of generalized probabilistic theories (GPTs) offers valuable
insight.

Definition 3. In the minimal tensor product framework,
the state space is given by the set of separable states:
StateSpace = Sep(C? ® C2) C D(C%2® C2). The corres-
ponding effect space consists of all operators 11 € L'.(C2 &
C2) satisfying 0 < Tr[[1Q)] < 1 for all Q) € Sep(C? @ C?).

Entangled

ASANANENENENEN

H. Barnum et al, Phys. Rev. Lett. 104, 140401 (2010)

S. G. Naik et al, Phys. Rev. Lett. 128, 140401 (2022)

R. K. Patra et al, Phys. Rev. Lett. 130,110202 (2023)
Bhattacharya et al. Phys. Rev. Research 2, 012068(R) (2020)
Saha et al. Ann. Phys. (Berlin) 532, 2000334 (2020)

Banik et al. Phys. Rev. A 100, 060101(R) (2019)

Banik et al. Phys. Rev. A 92, 030103(R) (2015)

Separable
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Proposition 1. Given the configuration pz ® Fy(ps) per ex- This configuration offers an
perimental run, the observables X*,Y*, and Z* are jointly advar}tage over the pa.ra%llel
measurable for all A € [0, (1 + u)/2]. configuration for the joint

measurability of {X, Y, Z}
whenever p > V3 — 1

- s




Conclusions

v" We demonstrate that the antiparallel configuration enables exact simultaneous
prediction of three mutually orthogonal spin components—an advantage
unattainable in the parallel case.

v As we show, this enhanced measurement compatibility in antiparallel configuration
is better appreciated within the framework of generalized probabilistic theories,
which allow a broader class of composite structures while preserving quantum
descriptions at the subsystem level.

v Furthermore, this approach extends the study of measurement incompatibility to
more general configurations beyond the parallel and antiparallel cases only,
providing deeper insight into the boundary between physical and unphysical
quantum state evolutions.

v At present we are extending this concept to a finite subset of states so that the
reported advantage can be experimentally verified (not discussed in this talk).



"Relations between authors and referees are, of course, almost
always strained. Authors are convinced that the malicious
stupidity of the referee is alone preventing them from laying
their discoveries before an admiring world. Referees are
convinced that authors are too arrogant and obtuse +to
recognize blatant fallacies in their own reasoning, even when
these have been called to their attention with crystalline
lucidity. All physicists know this, because all physicists are both
authors and referees, but it does no good. The ability of one
person to hold both views is an example of what Bohr called
complementarity.”
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