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Finitely correlated state given by cptp map 

D:S(H)→S(H⊗U) and state ω = TrU ◦D(ω):

[Fannes/Nachtergaele/Werner, CMP 144:443-490 (1992)]

… …D D D D Dω 𝟙

∈S(U⊗n) for all n

When D is (conjugation by) an isometry, we 
get matrix product state (MPS).



C*-finitely correlated state given by cptp map 

D:S(H)→S(H⊗U) and state ω = TrU ◦D(ω):

[Fannes/Nachtergaele/Werner, CMP 144:443-490 (1992)]

… …D D D D Dω 𝟙

∈S(U⊗n) for all n

When D is (conjugation by) an isometry, we 
get matrix product state (MPS).



General finitely correlated state given by map 

D:V→V⊗B(U) and V ∋ π = TrU ◦D(π):

[Fannes/Nachtergaele/Werner, CMP 144:443-490 (1992)]

… …D D D D Dπ τ

∈S(U⊗n) for all n
V is a vector space, τ linear s.t. τ(π)=1. 

What does this added generality actually 
buy beyond C*-FCS?



Rest of the talk: 

Classical finitely correlated states, 

 i.e. probability distribution on 𝕌∞


Concretely, we observe an infinite time

series …u …u u u u …u …

[u ∈ 𝕌 letters from a finite alphabet].
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Rest of the talk: 

Classical finitely correlated states, 

 i.e. probability distribution on 𝕌∞


Concretely, we observe an infinite time

series …u …u u u u …u …

[u ∈ 𝕌 letters from a finite alphabet].

Assume stationarity, i.e. for all t and 𝓁,

 Pr{U1=u1,…,U𝓁=u𝓁} = Pr{Ut=u1,…,Ut+𝓁-1=u𝓁}.
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Rest of the talk: 

Classical finitely correlated states, 

 i.e. probability distribution on 𝕌∞


Concretely, we observe an infinite time

series …u …u u u u …u …

[u ∈ 𝕌 letters from a finite alphabet].

Assume stationarity, i.e. for all t and 𝓁,

 Pr{U1=u1,…,U𝓁=u𝓁} = Pr{Ut=u1,…,Ut+𝓁-1=u𝓁}.

These marginals P(u), for all finite words 

 u = u1u2…u𝓁 ∈ 𝕌 = ∪ 𝕌 ,

determine the probability law. 
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Rest of the talk: 

Classical finitely correlated states, 

 i.e. probability distribution on 𝕌∞


”Explanation” of P(u) via a finite memory 
system as hidden cause:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁



Rest of the talk: 

Classical finitely correlated states, 

 i.e. probability distribution on 𝕌∞


 

”Explanation” of P(u) via a finite memory 
system as hidden cause:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

Of course, need to specify the nature of 
the causation, and of the memory…



Example: Cavity-atom interaction 

[Courtesy of S. Haroche]:



Example: Cavity-atom interaction 

[Courtesy of S. Haroche]:

Question: can one infer the quantum nature 
of the internal mechanism by observing P(u)?



Outline
✓. Observations as consequence of a


  finitary hidden cause (memory)


1. Classical, quantum and GPT memory


2. Reconstructing a quasirealisation: 


  low-rank Hankel matrix (completion)


3. Separations: classical ⊊ quantum ⊊ GPT✓ ✓



The x ∈ 𝕏 are from a finite set of internal 
states, D: 𝕏 → 𝕏 x 𝕌 is a stochastic map:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

D : 𝕏 → 𝕏 are sub-stochastic maps, s.t.


D = ∑ D  is stochastic with stationary 
distribution π: D𝟏 = 𝟏, πD = π.

       P(u u …u ) = πD D … D 𝟏

t

1-a. Classical memory (HMM)

u

⇀ ⇀
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D D D D D

⇀

u u u1 2 𝓁 1 2 𝓁
(p.r.)



The x ∈ 𝕏=S(H) are quantum states on H, 
and D is a completely positive instrument:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

D : 𝕏 → 𝕏 are completely positive maps, s.t.


D = ∑ D  is unital (cpup) with stationary 
state ω: D𝟙 = 𝟙, ω∘D = ω.

       P(u u …u ) = ω∘D ∘D … ∘D 𝟙

t

1-b. Quantum memory (HQMM)
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The x ∈ 𝕏=S(H) are quantum states on H, 
and D is a completely positive instrument:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

D : 𝕏 → 𝕏 are completely positive maps, s.t.


D = ∑ D  is unital (cpup) with stationary 
state ω: D𝟙 = 𝟙, ω∘D = ω.

       P(u u …u ) = ω∘D ∘D … ∘D 𝟙

t

1-b. Quantum memory (HQMM)
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C*-finitely

correlated state

u u u1 2 𝓁



The x ∈ 𝕏=S(H) are quantum states on H, 
and D is a completely positive instrument:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

t

1-b. Quantum memory (HQMM)

D D D D D

In real life (=in

the laboratory):



The x ∈ V are elements of a (real) vector 
space, and D is a collection of linear maps:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

D : V → V are linear maps, τ∈V, π∈V*, s.t.

D = ∑ D  preserves both τ and ω:

Dτ = τ, π∘D = π, as well as π(τ)=1.

       P(u u …u ) = π∘D ∘D … ∘D τ

t

1-c. General linear structure
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The x ∈ V are elements of a (real) vector 
space, and D is a collection of linear maps:

u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

D : V → V are linear maps, τ∈V, π∈V*, s.t.

D = ∑ D  preserves both τ and ω:

Dτ = τ, π∘D = π, as well as π(τ)=1.

       P(u u …u ) = π∘D ∘D … ∘D τ

t

1-c. General linear structure

u

uu

D D D D D

1 2 𝓁 (qu.r.)

Quasirealisation:

general finitely

correlated state

u u u1 2 𝓁



u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

D : V → V are linear maps, τ∈V, ω∈V*, s.t.

D = ∑ D  preserves both τ and π, π(τ)=1.

       P(u u …u ) = π∘D ∘D … ∘D τ

1-c. General linear structure

u

uu

D D D D D

u u u1 2 𝓁 1 2 𝓁 (qu.r.)

Unlike classical and quantum case, no a 
priori guarantee that P(u) ≥ 0.




u uu u u-k -1 𝓁0 1

… …
x-kx-k-1 x-2 x-1 x0 x1 x𝓁-1 x𝓁

1-c. General linear structure
D D D D D

Unlike classical and quantum case, no a 
priori guarantee that P(u) ≥ 0. In fact, 
checking positivity is undecidable ⚡

[Sontag, J. Comp. Syst. Sci. 11(3):375-381, 1975]

D : V → V are linear maps, τ∈V, ω∈V*, s.t.

D = ∑ D  preserves both τ and π, π(τ)=1.

       P(u u …u ) = π∘D ∘D … ∘D τ

u

uu
u u u1 2 𝓁 1 2 𝓁 (qu.r.)



Simple examples: -I.i.d. distributed ut ∈ 𝕌, 
i.e. P = P1  infinite product of single-letter 
distributions P1. Requires no, or rather only 
trivial, memory: dim V = 1.
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Simple examples: -I.i.d. distributed ut ∈ 𝕌, 
i.e. P = P1  infinite product of single-letter 
distributions P1. Requires no, or rather only 
trivial, memory: dim V = 1.

-De Finetti distribution P = ∑ πxPx  with 
distinct p.d.’s Px and πx>0. 

Realised as HMM by memorising x∈𝕏 forever,  
and indeed dim V ≥ |𝕏| is both sufficient and 
necessary for a quasirealisation.


⨂ℤ

x∈𝕏

⨂ℤ



Simple examples: -I.i.d. distributed ut ∈ 𝕌, 
i.e. P = P1  infinite product of single-letter 
distributions P1. Requires no, or rather only 
trivial, memory: dim V = 1.

-De Finetti distribution P = ∑ πxPx  with 
distinct p.d.’s Px and πx>0. 

Realised as HMM by memorising x∈𝕏 forever,  
and indeed dim V ≥ |𝕏| is both sufficient and 
necessary for a quasirealisation.


For |𝕏|=∞: stationary process not realised as 
HMM, HQMM, or even quasirealisation.

⨂ℤ

x∈𝕏
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Example. V = B(ℂ  )  = span{𝟙,X,Y,Z} qubit

with τ=𝟙, π=-Tr, and the following maps:


D (A) = - |0><0| A |0><0|,

D (A) = - |1><1| A |1><1|,

D (A) = - exp(iαX) A exp(-iαX),

D (A) = - exp(iβZ) A exp(-iβZ),

D (A) = - A .
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Example. V = B(ℂ  )  = span{𝟙,X,Y,Z} qubit

with τ=𝟙, π=-Tr, and the following maps:


D (A) = - |0><0| A |0><0|,

D (A) = - |1><1| A |1><1|,

D (A) = - exp(iαX) A exp(-iαX),

D (A) = - exp(iβZ) A exp(-iβZ),

D (A) = - A .


When α/π and β/π are irrational, dynamics 
explores whole Bloch sphere densely. Four-
dim. qu.r., but requires 2 qubits for c.p.r.!
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Example. V = B(ℂ  )  = span{𝟙,X,Y,Z} qubit

with τ=𝟙, π=-Tr, and the following maps:


D (A) = - |0><0| A |0><0|,

D (A) = - |1><1| A |1><1|,

D (A) = - exp(iαX) A exp(-iαX),

D (A) = - exp(iβZ) A exp(-iβZ),

D (A) = - A .


When α/π and β/π are irrational, dynamics 
explores whole Bloch sphere densely. Four-
dim. qu.r.: HQMM with qubit memory.
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Quantum application: characterisation of 
quantum devices - state preparation, gates 
and measurements - from first principles. 

[R. Blume-Kohout et al., 1310.4492] treat system 
as a black box whose reaction to different 

interventions we can 

observe…

Recover the internal mechanism from P(u)?

Evidently possible only 
up to linear equivalence, 
e.g. isometries.



u=u u …u ⟼D = D ∘D … ∘D  is semigroup 
representation.


u u u1 2 𝓁 1 2 𝓁u*

What guarantees positivity of probability?



Classical & quantum case: positivity P(u)≥0 
enforced by the vector space order.

Generally: Assume we have convex cones 

C ⊂ V and C ⊂ C’ ⊂ V*, s.t. τ∈C, π∈C, and the 
cones are preserved by the transformations, 
i.e. D C ⊂ C, CD ⊂ C ∀u. Then P(u)≥0.

*
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What guarantees positivity of probability?



Classical & quantum case: positivity P(u)≥0 
enforced by the vector space order.

Generally: Assume we have convex cones 

C ⊂ V and C ⊂ C’ ⊂ V*, s.t. τ∈C, π∈C, and the 
cones are preserved by the transformations, 
i.e. D C ⊂ C, CD ⊂ C ∀u. Then P(u)≥0.

*

~ ~

u u
~ ~

Dual cone C’={f∈V*: f(x)≥0 ∀x∈C}

What guarantees positivity of probability?



Classical & quantum case: positivity P(u)≥0 
enforced by the vector space order.

Generally: Assume we have convex cones 

C ⊂ V and C ⊂ C’ ⊂ V*, s.t. τ∈C, π∈C, and the 
cones are preserved by the transformations, 
i.e. D C ⊂ C, CD ⊂ C ∀u. Then P(u)≥0.

Conversely: If P≥0, then such cones exist, 
e.g. C=C   = cone{D τ : u ∈ 𝕌*},

    C=C’  = cone{πD : u ∈ 𝕌*}.
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Classical & quantum case: positivity P(u)≥0 
enforced by the vector space order.

Generally: Assume we have convex cones 

C ⊂ V and C ⊂ C’ ⊂ V*, s.t. τ∈C, π∈C, and the 
cones are preserved by the transformations, 
i.e. D C ⊂ C, CD ⊂ C ∀u. Then P(u)≥0. 
Conversely: If P≥0, then such cones exist, 
e.g. C=C   = cone{D τ : u ∈ 𝕌*},

    C=C’  = cone{πD : u ∈ 𝕌*}.

…not unique, could for instance also take 
dual cone C=C’; call any such C ”suitable”. 

*

~

u u
~ ~

umin

max u
~

~

~



Interpretation: finite-dimensional 

quasirealisation ”explains” time series 

P by the hidden mechanism of a 

general probabilistic theory (GPT):

-C and C’ are pointed and generating cones;

-τ∈int(C) and S:={f∈C’:f(τ)=1} state space;

-𝔈:=C∩(τ-C) ”effects” for measurements.


[G. Ludwig & school, 1960s-70s, …]



Interpretation: finite-dimensional 

quasirealisation ”explains” time series 

P by the hidden mechanism of a

general probabilistic theory (GPT):

-C and C’ are pointed and generating cones;

-τ∈int(C) and S:={f∈C’:f(τ)=1} state space;

-𝔈:=C∩(τ-C) ”effects” for measurements.


[G. Ludwig & school, 1960s-70s, …]

u

f t+1ft

≣

f ∘D = Pr{u|f }f  , relates 
current & future states, 

and the output u.

t t t+1{ u



Consider the Hankel-type matrix H=(Hu,v), 
with Hu,v = P(uv) = P(u u …u v v …v )

          = Hε,uv = Huv,ε .


𝓁 k1 1 22
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2. Reconstruction of V



Consider the Hankel-type matrix H=(Hu,v), 
with Hu,v = P(uv) = P(u u …u v v …v )

          = Hε,uv = Huv,ε .


If the process P has a quasirealisation of 
dim V = d, then

     Hu,v = (π∘D )(D τ),

and so rank H ≤ d.

𝓁 k1 1 22
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2. Reconstruction of V



Consider the Hankel-type matrix H=(Hu,v), 
with Hu,v = P(uv) = P(u u …u v v …v )

          = Hε,uv = Huv,ε .


If the process P has a quasirealisation of 
dim V = d, then

     Hu,v = (π∘D )(D τ),

and so rank H ≤ d.

𝓁 k1 1 22

*

*

2. Reconstruction of V

If P has p.r. w/ s states, then d=s; if it has 

c.p.r. w/ Hilbert space dimension t, then d=t2.

*

u v



If P has p.r. w/ s states, then d=s; if it has 

c.p.r. w/ Hilbert space dimension t, then d=t2.

*

Thus: finite rank of H necessary requirement 
for the existence of a quasirealisation, and 
hence of classical or quantum hidden Markov 
models. 


Is it sufficient? 



Consider the Hankel-type matrix H=(Hu,v), 
with Hu,v = P(uv) = P(u u …u v v …v ). 

Necessarily of finite rank. 

Conversely, if rank H = r < ∞: There exists 
a qu.r. (”regular rep.”) with dim V = r, 
which is the minimum. Any other minimal-
dim. qu.r. is similar to the regular one, 

i.e. linearly equivalent.
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Consider the Hankel-type matrix H=(Hu,v), 
with Hu,v = P(uv) = P(u u …u v v …v ).

Necessarily of finite rank.

Conversely, if rank H = r < ∞: There exists 
a qu.r. (”regular rep.”) with dim V = r, 
which is the minimum. Any other minimal-
dim. qu.r. is similar to the regular one.

[Construction: V = column space of H, and 
D  maps hv = H•,v to huv = H•,uv = H•u,v - 
linear because it selects the rows of hv 
with index ending in u; τ=hε, π=(1,0,0,…). 

Check that it works…]

𝓁 k1 1 22
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Fine, so assume finite rank r of H=(Hu,v), 
i.e. an r-dimensional quasirealisation exists.

Is the process then generated by a finite 
memory HMM (classical p.r.)? 




Fine, so assume finite rank r of H=(Hu,v), 
i.e. an r-dimensional quasirealisation exists.

Is the process then generated by a finite 
memory HMM (classical p.r.)? 


NO! [Fox/Rubin (1968) and Dharmadhikari/
Nadkarni (1970)] provided first examples of 
processes with finite Hankel rank (actually 
r=3) but requiring infinite classical memory. 
In fact they’re defined as HMM w/ infinite 
memory. Exploits spectral information from 
Perron-Frobenius theory.



Alright: assume finite rank r of H=(Hu,v), 
i.e. an r-dimensional quasirealisation exists.

Is the process then generated by a finite 
memory HQMM (quantum c.p.r.)? 

(Asked by Fannes/Nachtergaele/Werner 
[CMP 144:443-490 (1992)] for general finitely 
correlated states.)




Alright: assume finite rank r of H=(Hu,v), 
i.e. an r-dimensional quasirealisation exists.

Is the process then generated by a finite 
memory HQMM (quantum c.p.r.)? 

(Asked by Fannes/Nachtergaele/Werner 
[CMP 144:443-490 (1992)] for general finitely 
correlated states.)


Find: Fox/Rubin’s and Dharmadhikari/
Nadkarni’s processes have HQMMs (with 
qutrits).

[M. Fanizza/J. Lumbreras/AW, arXiv:2209.11225]



Minimal-dimensional quasirealisation of a 
process is unique, and isomorphic to the 
regular representation from H, dim V = r. 


3. Classical ⊊ quantum ⊊ GPT



Minimal-dimensional quasirealisation of a 
process is unique, and isomorphic to the 
regular representation from H, dim V = r. 


Fact: Given any quasirealisation V, then the 
regular one is obtained by going to quotient

V =: span(C  )/ker(C’  ). 


3. Classical ⊊ quantum ⊊ GPT

min max0



Minimal-dimensional quasirealisation of a 
process is unique, and isomorphic to the 
regular representation from H, dim V = r. 


Fact: Given any quasirealisation V, then the 
regular one is obtained by going to quotient

V =: span(C  )/ker(C’  ). 

For the cone C (classical, quantum or 
GPT), this means intersecting it with 
span(C  ), and factoring out ker(C’  ).

3. Classical ⊊ quantum ⊊ GPT

min max

min max0



Given convex cones C ⊂ V and C ⊂ C’ ⊂ V*, 
s.t. τ∈C, π∈C, and the cones are preserved by 
the transformations, i.e. D C ⊂ C, CD ⊂ C 
for all u. Then P(u)≥0.

Conversely: If P≥0, then such cones exist, 
e.g. C=C   = cone{D τ : u ∈ 𝕌*},

    C=C’  = cone{πD : u ∈ 𝕌*}.

But not unique: many cones between C    
and C    are suitable: C    ⊂ C ⊂ C   .

(Also, of course, C has to be stable under 
the maps D !)

~

u u
~ ~

umin

max u
~

min
max min max

u

Recall cones:



A HMM (p.r.) has the cone of non-negative 
vectors; this gives rise to polyhedral cones 
C & C’ in the regular representation.



A HMM (p.r.) has the cone of non-negative 
vectors; this gives rise to polyhedral cones 
C & C’ in the regular representation.

A HQMM (c.p.r.) has cone of semidefinite 
matrices; this gives rise to semidefinite 
representable (SDR) cones C & C’ in the 
regular representation:


  C = {x=(x1,…,xd) : ∃xd+1,…xe ∑ xiRi ≥ 0},


for certain DxD-matrices Ri.

i=1

e



In the previous example,

C   = C   , hence C is 

unique, and it’s not polyhedral: cone over 
Bloch sphere. Thus, this process has no 
(finite) classical realisation. 

min max

Polyhedral cone between C   and C   
necessary for cl. realisation. Sufficient? 
[Cf. however Dharmadhikari/Nadkarni]

min max



SDR cone between C   and C    necessary 
for existence of a quantum realisation. 
Sufficient? (…)

min max



SDR cone between C   and C    necessary 
for existence of a quantum realisation. 
Sufficient? (…)

min max

Thm. [M. Fanizza/J. Lumbreras/AW, 2209.11225]: 

∃ process P with Hankel rank H = 3 and

C   = C    transcendental, whereas SDR 
cones are semi-algebraic. Thus, P has no 
HQMM.

min max



SDR cone between C   and C    necessary 
for existence of a quantum realisation. 
Sufficient? (…)

min max

Answers open question of Fannes/Nachter-
gaele/Werner [CMP 144:443-490 (1992)] :-)

Thm. [M. Fanizza/J. Lumbreras/AW, 2209.11225]: 

∃ process P with Hankel rank H = 3 and

C   = C    transcendental, whereas SDR 
cones are semi-algebraic. Thus, P has no 
HQMM.

min max



Example: P has three symbols, 0, 1, 2. 

We give directly its quasirealisation: 

V=ℝ3; let a>1>b>0 such that ln a and ln b 
are linearly independent over the rationals. 

        a  0  0             b   0  0

D1 =    0   1  0    , D2 =   0   1   0   ,

       0 ln a  1             0 ln b  1［ ］［ ］
                          m01

D0 = m0μ0 , with m0 =    m02   ,

                          m03


                  μ0 = [μ01 μ02 μ03]

T ［ ］
T



Example: P has three symbols, 0, 1, 2. 

We give directly its quasirealisation: 

V=ℝ3; let a>1>b>0 such that ln a and ln b 
are linearly independent over the rationals. 

［ ］［ ］
［ ］

          a b     0        0

D1 D2 =    0      1         0    for s, t ∈ ℕ

          0 s(ln a)+t(ln b) 1         

s t
s t
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       0 ln a  1             0 ln b  1
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       0 ln a  1             0 ln b  1
          a b     0        0

D1 D2 =    0      1         0    for s, t ∈ ℕ

          0 s(ln a)+t(ln b) 1         ［s t



Example: P has three symbols, 0, 1, 2. 

We give directly its quasirealisation: 

V=ℝ3; let a>1>b>0 such that ln a and ln b 
are linearly independent over the rationals. 

［ ］［ ］
］

           e   0  0

D1 D2 =    0   1  0    , with x ∈ ℝ dense! 

          0   x  1         

x

        a  0  0             b   0  0

D1 =    0   1  0    , D2 =   0   1   0   ,

       0 ln a  1             0 ln b  1

［s t



Example (cont’d): D0 is a ”reset” operation 
(making P a ”birth process”), so can write 

C’   = cone{[μ01e  μ02+μ03x μ03] : x∈ℝ}

C   = cone{[m01e  m03 m02+m03x] : x∈ℝ}

x
max

min
x T

Fact: C    is of the same form as C   , 
only with different parameters. One can 
choose D0 such that C   =C   =C.

max min

min max



Example (cont’d): D0 is a ”reset” operation 
(making P a ”birth process”), so can write 

C’   = cone{[μ01e  μ02+μ03x μ03] : x∈ℝ}

C   = cone{[m01e  m03 m02+m03x] : x∈ℝ}

x
max

min
x T

Fact: C    is of the same form as C   , 
only with different parameters. One can 
choose D0 such that C   =C   =C.

max min

min max

In that case, a suitable positive linear 
combination of D0, D1, D2 has right fixed 
point τ in int(C), and left fixed point π in 
int(C’). This is the sought-after qu.r. (…)



Example gives rise to the exponential cone

   Kexp = {(x,y,z) : x/y ≥ ez/y, x,y,z≥0},

and it works for us because that is a 
transcendental shape. 



Example gives rise to the exponential cone

   Kexp = {(x,y,z) : x/y ≥ ez/y, x,y,z≥0},

and it works for us because that is a 
transcendental shape. 

More examples from power cone (0<t<1)

   Kt = {(x,y,z) : xty1-t ≥ |z|, x,y≥0, z∈ℝ},

which is transcendental iff t is irrational. 

As before we can design a reset map and 
two invertible maps, which latter act densely 
transitive on the cone’s extremal rays. And 
we can engineer C   =C   , too.min max



4. Further thoughts
 Exhibited a process (FCS) without a 
quantum realisation (i.e. it is not C*-FCS). 
However, that is an asymptotic statement, 
every finite block of the chain is c.p. 
representable. To approximate P on n sites 
to error ε, how large a virtual dimension t 
do we need? For fixed t and n→∞, does ε 
become arbitrarily small, or is it bounded 
away from 0, or does even converges to 1?



4. Further thoughts
Extend to genuinely quantum case, i.e. a 
chain of non-commutative spin C*-algebras:

 Have a generalisation of regular (minimum 
dim.) representation for finitely corr. states

 Rather than a vector space order on V 
and positive elements and maps, necessary 
and sufficient structure is an operator 
system, i.e. consistent orders on V⊗Mn, and 
maps are completely positive…

[Fannes/Nachtergaele/Werner, CMP 144:443-490 (1992)]



4. Further thoughts
Finitely correlated state on a chain of non-
commutative spin C*-algebras:

 In fact, the finitely correlated state itself 
gives us two extreme o.s., where the cones 
(V⊗Mn)+ are either all as small or all as 
large as they can be. 

 Exponential and power cones have matrix 
generalisations; perhaps suitable for new 
variational classes of FCS? Need cp maps!

[Fanizza et al., work in progress]



4. Further thoughts
Finitely correlated state on a chain of non-
commutative spin C*-algebras:

 Examples of a FCS that are not C*-FCS 
are highly mixed (they’re p.d.’s). So what 
about pure ones?

 Note that C*-FCS always have C*-FCS 
purifications. Do our example FCS have 
FCS purifications?

[Fanizza et al., work in progress]



4. Questions, questions, questions
 Low-rank completion of the Hankel 
matrix with noisy data? Cf. [Fanizza/Galke/ 
Lumbreras/Rouzé/AW, arXiv:2312.07516]

 How to find a quantum model just from 
the regular representation (assuming one 
exists)? 

 Can these exponential and power cones 
be useful? Note that dual cone is of the 
same kind, so perhaps good for convex 
optimisation. Interesting class of GPTs?





=Additional material=



Ogni scarrafon’ è 
bell’ a mamma suja



If your model is not minimal, still useful, 
assuming it has a suitable cone C⊂V.

Redundancy…

5. Removing redundancy: quotients



5. Removing redundancy: quotients

Reachable space; might as 

well go to W, with cone C∩W…

If your model is not minimal, still useful, 
assuming it has a suitable cone C⊂V.

Redundancy: W=span{D τ : u ∈ 𝕌*} ⊂ V,

            

u



5. Removing redundancy: quotients

Reachable space; might as 

well go to W, with cone C∩W…

Null space; C∩K=0, so 

we may factor out K…

If your model is not minimal, still useful, 
assuming it has a suitable cone C⊂V.

Redundancy: W=span{D τ : u ∈ 𝕌*} ⊂ V,

             K={πD : u ∈ 𝕌*}  ⊂ V.

u
u

⊥



5. Removing redundancy: quotients
If your model is not minimal, still useful, 
assuming it has a suitable cone C⊂V.

Redundancy: W=span{D τ : u ∈ 𝕌*} ⊂ V,

             K={πD : u ∈ 𝕌*}  ⊂ V.

u
u

⊥

V := W/K,

C := (C∩W)/K = {w+K : w∈C∩W},

τ := τ+K, π := π/K, D := D /K; well-defined 

because of π(K)=0, D W⊂W, D K⊂K.u u

0
0

0 0 u u
0



5. Removing redundancy: quotients
If your model is not minimal, still useful, 
assuming it has a suitable cone C⊂V.

Redundancy: W=span{D τ : u ∈ 𝕌*} ⊂ V,

             K={πD : u ∈ 𝕌*}  ⊂ V.

u
u

⊥

V := W/K,

C := (C∩W)/K = {w+K : w∈C∩W},

τ := τ+K, π := π/K, D := D /K.

0
0

0 0

Always a minimal-dim. qu.r., hence is

isomorphic to regular, and cone C is suitable.0

u u
0



Redundancy: W=span{D τ : u ∈ 𝕌*} ⊂ V,

             K={πD : u ∈ 𝕌*}  ⊂ V.

u
u

⊥

V := W/K,

C := (C∩W)/K = {w+K : w∈C∩W},

τ := τ+K, π := π/K, D := D /K.

0
0

0 0 u u

Classical model, i.e. V=ℝ , C=ℝ  , τ=(1,…,1)⊤, 

                π a probability row vector.


d
≥0
d

0



Redundancy: W=span{D τ : u ∈ 𝕌*} ⊂ V,

             K={πD : u ∈ 𝕌*}  ⊂ V.

u
u

⊥

V := W/K,

C := (C∩W)/K = {w+K : w∈C∩W},

τ := τ+K, π := π/K, D := D /K.

0
0

0 0

Classical model, i.e. V=ℝ , C=ℝ  , τ=(1,…,1)⊤, 

                π a probability row vector.

C is then a polyhedral cone and every such 
cone arises in the above way (Fourier-
Motzkin elemination). Guaranteed:

d ≤ #extremal rays of C, sometimes best.

d
≥0
d

0

u u
0



Quantum model, i.e. V=B(H) , C=B(H)  , τ=𝟙,

       π=ω quantum state, D  are cp maps.


Once constructed K∩W ⊂ W ⊂ V: C∩W is an 
operator system, C  = (C∩W)/K a quotient 
operator system; the D  preserve C, in fact 
cp maps in the operator system sense.

 


5’. Quotient of a quantum model
≥0sa

u

0

u

[Farenick/Paulsen, Math. Scand. 111:210-243, 2012]
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Quantum model, i.e. V=B(H) , C=B(H)  , τ=𝟙,

       π=ω quantum state, D  are cp maps.


Once constructed K∩W ⊂ W ⊂ V: C∩W is an 
operator system, C  = (C∩W)/K a quotient 
operator system; the D  preserve C, in fact 
cp maps in the operator system sense.

 

Membership in the cone is an SDP: semi-
definite condition of a finite-size matrix 
with existential real variables.

5’. Quotient of a quantum model
≥0sa

[Farenick/Paulsen, Math. Scand. 111:210-243, 2012]

u
0

u

0



[Farenick/Paulsen, Math. Scand. 111:210-243, 2012]

𝟙 ∈ W=span{D 𝟙 : u ∈ 𝕌*} = B(H)  ,

    K={ω∘D : u ∈ 𝕌*}  ⊂ B(H)  .

u
u

⊥

V := W/K,

C := (B(H) ∩W)/K = {w+K : w∈B(H) ∩W}.
0
0

sa

sa

Vector space and positive cone:

≥0 ≥0

SDR operator systems:



[Farenick/Paulsen, Math. Scand. 111:210-243, 2012]

𝟙 ∈ W=span{D 𝟙 : u ∈ 𝕌*} = B(H)  ,

    K={ω∘D : u ∈ 𝕌*}  ⊂ B(H)  .

u
u

V := W/K,

C := (B(H) ∩W)/K = {w+K : w∈B(H) ∩W}.
0
0

sa

sa

Vector space and positive cone:

Operator system lifts this to V ⊗B(ℂ  ) :n
sa0

C := (B(H⊗ℂ  ) ∩W⊗B(ℂ  ) )/K⊗𝟙

≥0 ≥0

n
n n
≥0 sa

SDR operator systems:

⊥



[Farenick/Paulsen, Math. Scand. 111:210-243, 2012]

𝟙 ∈ W=span{D 𝟙 : u ∈ 𝕌*} = B(H)  ,

    K={ω∘D : u ∈ 𝕌*}  ⊂ B(H)  .

u
u

V := W/K,

C := (B(H) ∩W)/K = {w+K : w∈B(H) ∩W}.
0
0

sa

sa

Vector space and positive cone:

Operator system lifts this to V ⊗B(ℂ  ) :n
sa0

C := (B(H⊗ℂ  ) ∩W⊗B(ℂ  ) )/K⊗𝟙

≥0 ≥0

n
n n
≥0 sa

CP maps: (D ⊗id)C  ⊂ C  for all u and n.u n n

SDR operator systems:

⊥



But the D  remember more than just being 
cp in the operator system. Indeed, 

 D  ∈ 𝒫 := {Λ/K : Λ cp on B(H), 


                Λ(W)⊂W, Λ(K)⊂K} ⊂ End(V ),

which is itself an SDR cone.

u
0

u
0

0



But the D  remember more than just being 
cp in the operator system. Indeed, 

 D  ∈ 𝒫 := {Λ/K : Λ cp on B(H), 


                Λ(W)⊂W, Λ(K)⊂K} ⊂ End(V ),

which is itself an SDR cone. Maybe you 
don’t find it too pretty…it took us

a while, too, to see its beauty :-)


u
0

u
0

0



But the D  remember more than just being 
cp in the operator system. Indeed, 

 D  ∈ 𝒫 := {Λ/K : Λ cp on B(H), 


                Λ(W)⊂W, Λ(K)⊂K} ⊂ End(V ),

which is itself an SDR cone. Maybe you 
don’t find it too pretty…it took us

a while, too, to see its beauty :-)

𝒫=𝒫(W,K) ⊂ CP(V ), and in general

the inclusion is strict! 

[Equality by Arveson’s extension 

theorem for K=0 or W=B(H) ]

u
0

u
0

0

0

sa



Task: Find a suitable cone C for the qu.r. 
(V,τ,π,D ), ideally a ”nice” one…

Necessarily, C   ⊂ C ⊂ C   , with (recall)

6. Reconstructing the vector order?

min max
C   = cone{D τ : u ∈ 𝕌*},

C   = cone{πD : u ∈ 𝕌*}’.

umin

max u

u



Task: Find a suitable cone C for the qu.r. 
(V,τ,π,D ), ideally a ”nice” one…

Necessarily, C   ⊂ C ⊂ C   , with (recall)

6. Reconstructing the vector order?

min max
C   = cone{D τ : u ∈ 𝕌*},

C   = cone{πD : u ∈ 𝕌*}’.

umin

max u

Can we choose C polyhedral or SDR? 
Difficulty of course that C has to be 
preserved by the D ; note that C   & C    
satisfy this automatically.

u min max

u



Instructive special case: C = C   = C   ,

ruling out a classical model if that is not 
a polyhedral cone. [Cf. example, where this 
happens with C=cone over a Bloch sphere.]


6. Reconstructing the vector order?
maxmin



Instructive special case: C = C   = C   ,

ruling out a classical model if that is not 
a polyhedral cone. [Cf. example, where this 
happens with C=cone over a Bloch sphere.

And the other example, where C is unique 
and not SDR, in fact transcendental; 
provides a process generated by a finite 
GPT, but w/o quantum realisation.]


6. Reconstructing the vector order?
maxmin


