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Introduction

Motivation

Long quest to understand quantum processes.

Information theory is powerful tool in analyzing potential of quantum systems.

Could possibly unravel novel information processing features of quantum processes.
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Introduction

Queries

How novel would the conditional entropy of quantum processes be when compared with
the conditional entropy of states?

Can the conditional entropy of bipartite quantum processes be strictly lower than the
least possible values of entropy of quantum processes?

If yes, what would that signature property for quantum processes be?
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Introduction

Quantum states and processes

Quantum states
State of a quantum system contains the description of the system. It is given by a density
operator (positive semidefinite operator with unit trace) defined on the Hilbert space
associated with the system.

Quantum channels
The physical transformation of quantum states are given by a quantum channel. It is
completely positive, trace-preserving map. For any quantum channel NA→B, there exists a
unitary operator UAE ′→BE such that

NA→B(·) = trE [UAE ′→BE (· ⊗ |0⟩⟨0|E ′)(UAE ′→BE )†].

The physical transformation of a quantum channel is given by quantum superchannel, e.g.,
Θ(NA→B) = QRB→D ◦ NA→B ◦ PC→RA = N ′

C→D.
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Result Highlights

Sneak peek 1

Entropy Conditional entropy
random variables 0 ≤ H(X ) ≤ log |X | 0 ≤ H(X |Y ) ≤ log |X |
quantum states 0 ≤ S(A)ρ ≤ log |A| − log |A| ≤ S(A|B)ρ ≤ log |A|

quantum channels − log |A| ≤ S[A]N ≤ log |A| [GW21] − log |A′||B′||B| ≤ S[A|B]N ≤ log |A|
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Result Highlights

Sneak peek 2

Conditional entropy: quantum states Vs quantum channels
S(A)ρ achieves minimal value 0 iff the state ρA is pure [vN32].
S[A]N achieves minimal value − log min{|A′|, |A|} iff the channel NA′→A is isometric [GW21].
S(A|B)ρ < 0 =⇒ state ρAB is entangled [CA97].
S[A|B]N < − log |A| =⇒ channel NA′B′→AB is signaling from A′ → B.
S(A|B) < 0 for all pure entangled states ρAB [CA97, HOW05].
S[A|B]N < − log |A| for all unitary channels NA′B′→AB signaling from A′ → B.
S(A|BC)ρ ≤ S(A|B)ρ for states ρAB [LR73].
S[A|BC ]N ≤ S[A|B]N for channels NA′B′→AB.
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Result Highlights

Conditional entropy of a channel: Axioms

Axioms
For any conditional entropy function f [A|B]N of a bipartite channel NA′B′→AB, desired
properties are

Monotonicity: Nondecreasing under the action of local pre-processing and post-processing
with random unitary channels on A′, A systems and any pre-processing and
post-processing on B′, B systems.
Conditioning shouldn’t increase entropy, f [A|B]N ≤ f [A]N .
Normalization: For a replacer channel N (ρA′B′) = σAB for all states ρA′B′ ,
f [A|B]N = f (A|B)σ.
For NA′B′→AB = N 1

A′→A ⊗ N 2
B′→B, f [A|B]N = f [A]N 1 .
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Methods

Quantum relative entropy: A parent information-theoretic quantity
The quantum relative entropy D(·∥·) between

a state ρA and a positive semidefinite operator σA is defined as

D(ρA∥σA) = − tr[ρA log(ρA − σA)] (1)

if supp(ρ) ⊆ supp(σ), else +∞.
a channel NA→B and a completely positive map MA→B,

D[N ∥M] := sup
ρRA∈St(RA)

D(idR ⊗N (ρRA)∥ idR ⊗N (ρRA)),

suffices to consider optimization over pure input states.
The quantum relative entropy between

states: monotone under the action of quantum channel.
channels: monotone under the action of quantum superchannel.
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Methods

Entropy of state

For quantum states,
the von Neumann entropy

S(A)ρ := S(ρA) := −D(ρA∥1A) = − tr[ρA log ρA]

.
the von Neumann conditional entropy

S(A|B)ρ := − inf
σ∈St(B)

D(ρAB∥1A ⊗ σB)

= −D(ρAB∥1A ⊗ ρB).
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Methods

Entropy of channel

The replacer map RA′→A is a completely positive map such that RA′→A(XA′) = tr[XA′ ]1A. Its
Choi operator ΓR

RA := idR ⊗R(ΓRA′) = 1R ⊗ 1A, where ΓRA′ =
∑

i ,j |ii⟩ ⟨jj |RA′ .

The completely depolarizing channel R̃A′→A = 1
|A|RA′→A always outputs maximally mixed

state πA = 1
|A|1A for all input states.

Entropy of a channel
For quantum channel NA′→A, its von Neumann entropy is [GW21] (see also [SPSD24])

S[A]N := S[NA′→A] := −D[N ∥R] = log |A| − D[N ∥R̃] = inf
ψ∈St(RA′)

S(A|R)N (ψ).
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Results

Conditional entropy of a channel: Formulation

For a bipartite channel NA′B′→AB, following definitions satisfy axioms∗.

von Neumann conditional entropy
S[A|B]N := − infM∈CPTP D[NA′B′→AB∥RA′→A ⊗ MB′→B].

von Neumann NS conditional entropy
S ̸→[A|B]N := −D[NA′B′→AB∥RA→A ◦ NA′B′→AB].

∗The reduced channel NA′B′→A of a bipartite channel NA′B′→AB to be defined as
NA′B′→A := trB ◦NA′B′→AB.

Then, we have, S[A]N := S[NA′B′→A] = −D[NA′B′→A∥RA′B′→A] and S[A|B]N ≤ S[A]N .
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Results

Idea for channelization

The idea is to “channelize” S(A|B)ρ = − infσ∈St(B) D(ρAB∥1A ⊗ σB) = −D(ρAB∥1A ⊗ ρB),

ρAB → NA′B′→AB

1A ⊗ σB → RA→A ⊗ MB′→B

1A ⊗ ρB = RA→A(ρAB) → RA→A ◦ NA′B′→AB,

D(·∥·) between positive operators → D[·∥·] between completely positive maps.

Notice that S ̸→[A|B]N = infψ∈St(RA′B′) S(A|RB)N (ψ).
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Results

Conditional entropies & Causal structure

For an arbitrary bipartite quantum channel NA′B′→AB, S[A|B]N ≤ S ̸→[A|B]N .
S[A|B]N < S ̸→[A|B]N iff channel NA′B′→AB is signaling from A′ → B, i.e.,
trA ◦NA′B′→AB = trA′ ⊗MB′→B for some M ∈ CPTP.
For no-signaling NA′B′→AB, S[A|B]N = S ̸→[A|B]N .
For tele-covariant channel NA′B′→AB, S[A|B]N = S(RAA|RBB)ΦN − log |A′|, where
ΦN

RAARBB := N (ΦRAA′ ⊗ ΦRBB′).
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