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The Advanced Standard Encryption
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• Standardized in 2001 for 3 key lengths: 128, 192 and 256 bits

• Block size of 128 bits: 4× 4 matrix of bytes

• An AES round applies MC ◦ SR ◦ SB ◦AK to the state

• No MixColumns in the last round
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AES Key Schedules
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Differential cryptanalysis

• Cryptanalysis technique introduced by Biham and Shamir in 1990.

• Based on the existence of a high-probability differential (δin, δout).

• If the probability of (δin, δout) is (much) higher than 2−n, where n is the block size,
then we have a differential distinguisher.
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AES differential trails

# active S-boxes, max DP of the AES S-box = 2−6

↪→ bound on the differential probability

R R R R Difference passing through an S-box

No difference

Figure: 4-round truncated differential trail of AES with 25 active S-boxes: p ≤ 2−25×6

Single-key model VS Related-key model

• Single-key: simple and powerful security proofs.

• Related-key: much weaker.
Related-key attacks on the full AES-192 and AES-256, Biryukov et al., 2009
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Modeling the AES truncated trails

Basic propagation rules ...

XOR of two bytes
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... do not necessarily lead to valid truncated trails.

KSKS
is not instantiable.Ex:

6 / 38



Changing the key schedule for a permutation

Using a permutation as key schedule:

• Efficient in both hardware and software

• Easier to analyze

• Better security with simpler design?

Previous results:
• Khoo et al. (FSE 2018): permutation for AES-128

• easy to generate similar ones at random

• Derbez et al. (SAC 2018): better permutations for AES-128 + bounds

• Issue with the model: permutations are much worst than expected!
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Generic Bounds on 2, 3 and 4 rounds

Formally proven [DFJL18]

The optimal bounds for 2, 3 and 4 rounds are respectively 1, 5 and 10 active S-boxes,
even when considering induced equations.

x0 y0

P

x1 y1

1 P

1

x2

4

y2

1

3
4
5

x3

2 rounds

3 rounds

10 / 38



Generic Bounds on 5, 6 and 7 rounds

Formally proven [DFJL18]

The optimal bounds for 5, 6 and 7 rounds are respectively 14, 18 and 21 active S-boxes,
without considering equations.

5 rounds

6 rounds

What are the bounds when considering equations?

11 / 38



Generic Bounds on 5, 6 and 7 rounds

Formally proven [DFJL18]

The optimal bounds for 5, 6 and 7 rounds are respectively 14, 18 and 21 active S-boxes,
without considering equations.

5 rounds

6 rounds

What are the bounds when considering equations?

12 / 38



A Definition

• A mixed-integer program (MIP) is an optimization problem of the form:
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MIP Solution Framework
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Application to AES
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• xr [i ] = yr [i ]

, yr [i ] = zr [SR[i ]]
• No difference in key: wr−1[i ] = xr [i ]
• Difference in key: wr−1[i ] + kr [i ] + xr [i ] ̸= 1

1− wr−1[i ] + kr [i ] + xr [i ] ≥ 1
wr−1[i ] + 1− kr [i ] + xr [i ] ≥ 1
wr−1[i ] + kr [i ] + 1− xr [i ] ≥ 1
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• xr [i ] = yr [i ] , yr [i ] = zr [SR[i ]]
• ∑

i∈C zr [i ] + wr [i ] = 0 or ≥ 5
• Introduce an extra binary variable e∑

i∈C
zr [i ] + wr [i ] ≥ 5e and

∑
i∈C

zr [i ] + wr [i ] ≤ 8e
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Correctness of the model
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Is this model correct?

• Yes, if there is no difference in the key

• No otherwise!

wr ⊕ wr+1 = MC(zr ⊕ zr+1) does not satisfy MDS property!
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Linear Algebra

How to solve this issue?

• Compute all linear combinations of the original system and add corresponding
constraints?
• too many constraints → model very slow to solve

• Use a callback: check validity of solutions a posteriori
• Depend on the problem

• Better solutions?
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Double MILP model

Goal: find a permutation ensuring b active S-boxes.

Generate P

Ensure that P is a permutation.

Remove the bad subkeys pattern (K1, . . . ,Kn).

Evaluate P

No solution with less than b active S-boxesA trail with less than b active S-boxes.

P
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Removing a bad subkeys pattern

• 1rst idea: forbid the exact trail.

At most 3 of these equalities
should be true.

P(0) = 2 P(1) = 14

P(2) = 3 P(14) = 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

P P

• Possible if and only if the differences can all be equal!
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Removing a bad subkeys pattern

• 2nd idea: forbid the subkeys pattern.

At most 1 of these equalities
should be true.

P({0, 1}) = {2, 14}
P({2, 14}) = {3, 15}
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• Possible if and only if the differences can all be equal!
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Results on AES-128

Rounds 3 4 5 6 7

AES-128 5 12 17 21 27

Khoo et al. 5 10 14 19 23

P128
5 10 14 20 22

5 9 15 20 23

• Not able to strictly improve Khoo et al. bounds

• Permutations seem weaker than original key-schedule ...

• ... but all active S-boxes are located in the internal states
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AES-192 and AES-256
These versions are much weaker against differential cryptanalysis

• Boomerang attacks on the full version against both of them!

AES with permutation-based key-schedule

The optimal bounds for 2, 3 and 4 rounds for AES-192 (resp. AES-256) are 0, 1 (resp. 2)
and 5 active S-boxes.
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Results

Rounds 3 4 5 6 7 8 9 10

AES-192 1 4 5 10 14 18 24 29

P192 1 5 10 13 17 22 25 28

AES-256 1 3 3 5 5 10 15 16

P256 1 2 5 10 14 16 22 26

• Improve the resistance against differential cryptanalysis

• Secure against boomerang attacks!
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Conclusion

• The key schedule is one of the less understood components in block ciphers.

• Simple key-schedules are easier to study and can provide good resistance against
differential cryptanalysis.

Open problems:

• How to reduce the search space?

• Optimize against other types of attacks: meet-in-the-middle attacks,
key-recoveries, ...

Thank you for your attention!
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