

Alternative Key Schedules for the AES

Christina Boura¹, **Patrick Derbez**², Margot Funk¹

¹ Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles ² Univ Rennes, Inria, CNRS, IRISA

Únría Université de Rennes

The Advanced Standard Encryption

- Standardized in 2001 for 3 key lengths: 128, 192 and 256 bits
- Block size of 128 bits: 4×4 matrix of bytes
- An AES round applies $MC \circ SR \circ SB \circ AK$ to the state
- No MixColumns in the last round

AES Key Schedules

Differential cryptanalysis

- Cryptanalysis technique introduced by Biham and Shamir in 1990.
- Based on the existence of a high-probability differential $(\delta_{in}, \delta_{out})$.

• If the probability of $(\delta_{in}, \delta_{out})$ is (much) higher than 2^{-n} , where *n* is the block size, then we have a differential distinguisher.

AES differential trails

active S-boxes, max DP of the AES S-box = 2^{-6}

 \hookrightarrow bound on the differential probability

Difference passing through an S-boxNo difference

Figure: 4-round truncated differential trail of AES with 25 active S-boxes: $p \leq 2^{-25 \times 6}$

Single-key model VS Related-key model

- Single-key: simple and powerful security proofs.
- Related-key: much weaker.

Related-key attacks on the full AES-192 and AES-256, Biryukov et al., 2009

Modeling the AES truncated trails

Basic propagation rules ...

... do not necessarily lead to valid truncated trails.

Changing the key schedule for a permutation

Using a **permutation** as key schedule:

- Efficient in both hardware and software
- Easier to analyze
- Better security with simpler design?

Previous results:

- Khoo et al. (FSE 2018): permutation for AES-128
- Derbez et al. (SAC 2018): better permutations for AES-128 + bounds

Changing the key schedule for a permutation

Using a **permutation** as key schedule:

- Efficient in both hardware and software
- Easier to analyze
- Better security with simpler design?

Previous results:

- Khoo et al. (FSE 2018): permutation for AES-128
 - easy to generate similar ones at random
- Derbez et al. (SAC 2018): better permutations for AES-128 + bounds

Changing the key schedule for a permutation

Using a **permutation** as key schedule:

- Efficient in both hardware and software
- Easier to analyze
- Better security with simpler design?

Previous results:

- Khoo et al. (FSE 2018): permutation for AES-128
 - easy to generate similar ones at random
- Derbez et al. (SAC 2018): better permutations for AES-128 + bounds
 - Issue with the model: permutations are much worst than expected!

Generic Bounds on 2, 3 and 4 rounds

Formally proven [DFJL18]

The optimal bounds for 2, 3 and 4 rounds are respectively 1, 5 and 10 active S-boxes, even when considering induced equations.

Generic Bounds on 5, 6 and 7 rounds

Formally proven [DFJL18]

The optimal bounds for 5, 6 and 7 rounds are respectively 14, 18 and 21 active S-boxes, **without considering equations**.

Generic Bounds on 5, 6 and 7 rounds

Formally proven [DFJL18]

The optimal bounds for 5, 6 and 7 rounds are respectively 14, 18 and 21 active S-boxes, **without considering equations**.

What are the bounds when considering equations?

A Definition

• A mixed-integer program (MIP) is an optimization problem of the form:

$$\begin{array}{ll} Minimize & c^T x \\ Subject to & Ax = b \\ & l \leq x \leq u \\ \text{some or all } x_j \text{ integer} \end{array}$$

MIP Solution Framework

• $x_r[i] = y_r[i]$

• $x_r[i] = y_r[i]$, $y_r[i] = z_r[SR[i]]$

- $x_r[i] = y_r[i]$, $y_r[i] = z_r[\operatorname{SR}[i]]$
- $\sum_{i \in C} z_r[i] + w_r[i] = 0 \text{ or } \geq 5$

- $x_r[i] = y_r[i]$, $y_r[i] = z_r[SR[i]]$
- $\sum_{i\in C} z_r[i] + w_r[i] = 0$ or ≥ 5
- Introduce an extra binary variable e

$$\sum_{i \in C} z_r[i] + w_r[i] \ge 5e \text{ and } \sum_{i \in C} z_r[i] + w_r[i] \le 8e$$

• No difference in key: $w_{r-1}[i] = x_r[i]$

- No difference in key: $w_{r-1}[i] = x_r[i]$
- Difference in key: $w_{r-1}[i] + k_r[i] + x_r[i] \neq 1$

$$\begin{cases} 1 - w_{r-1}[i] + k_r[i] + x_r[i] \ge 1\\ w_{r-1}[i] + 1 - k_r[i] + x_r[i] \ge 1\\ w_{r-1}[i] + k_r[i] + 1 - x_r[i] \ge 1 \end{cases}$$

Correctness of the model

Is this model correct?

Correctness of the model

Is this model correct?

• Yes, if there is no difference in the key

Correctness of the model

Is this model correct?

- Yes, if there is no difference in the key
- No otherwise!

 $w_r \oplus w_{r+1} = MC(z_r \oplus z_{r+1})$ does not satisfy MDS property!

Linear Algebra

How to solve this issue?

- Compute all linear combinations of the original system and add corresponding constraints?
 - too many constraints \rightarrow model very slow to solve

Linear Algebra

How to solve this issue?

- Compute all linear combinations of the original system and add corresponding constraints?
 - too many constraints \rightarrow model very slow to solve
- Use a callback: check validity of solutions a posteriori
 - Depend on the problem

Linear Algebra

How to solve this issue?

- Compute all linear combinations of the original system and add corresponding constraints?
 - too many constraints \rightarrow model very slow to solve
- Use a callback: check validity of solutions a posteriori
 - Depend on the problem
- Better solutions?

Goal: find a permutation ensuring *b* active **S**-boxes.

Generate P

Evaluate P

Ensure that P is a permutation.

Goal: find a permutation ensuring *b* active **S**-boxes.

Ensure that P is a permutation.

Goal: find a permutation ensuring *b* active **S**-boxes.

Goal: find a permutation ensuring *b* active **S**-boxes.

Removing a bad subkeys pattern

• 1^{rst} idea: forbid the exact trail.

0	1	2	3	
4	5	6	7	F
8	9	10	11	
12	13	14	15	

	0	1	2	3	
ر ک	4	5	6	7	
~	8	9	10	11	
	12	13	14	15	

	0	1	2	3
D.	4	5	6	7
~	8	9	10	11
	12	13	14	15

At most 3 of these equalities					
should be true.					
P(0) = 2	P(1)=14				
P(2) = 3	P(14) = 15				

Removing a bad subkeys pattern

• 2nd idea: forbid the subkeys pattern.

• Possible if and only if the differences can all be equal!

Results on AES-128

Rounds	3	4	5	6	7
AES-128	5	12	17	21	27
Khoo et al.	5	10	14	19	23
Pres	5	10	14	20	22
128	5	9	15	20	23

- Not able to strictly improve Khoo et al. bounds
- Permutations seem weaker than original key-schedule ...
- ... but all active S-boxes are located in the internal states

AES-192 and AES-256

These versions are much weaker against differential cryptanalysis

• Boomerang attacks on the full version against both of them!

AES-192 and AES-256

These versions are much weaker against differential cryptanalysis

• Boomerang attacks on the full version against both of them!

AES with permutation-based key-schedule

The optimal bounds for 2, 3 and 4 rounds for AES-192 (resp. AES-256) are 0, 1 (resp. 2) and 5 active S-boxes.

Results

Rounds	3	4	5	6	7	8	9	10	
AES-192	1	4	5	10	14	18	24	29	
P ₁₉₂	1	5	10	13	17	22	25	28	
AES-256	1	3	3	5	5	10	15	16	
P_{256}	1	2	5	10	14	16	22	26	

- Improve the resistance against differential cryptanalysis
- Secure against boomerang attacks!

Conclusion

- The key schedule is one of the less understood components in block ciphers.
- Simple key-schedules are easier to study and can provide good resistance against differential cryptanalysis.

Open problems:

- How to reduce the search space?
- Optimize against other types of attacks: meet-in-the-middle attacks, key-recoveries, ...

Conclusion

- The key schedule is one of the less understood components in block ciphers.
- Simple key-schedules are easier to study and can provide good resistance against differential cryptanalysis.

Open problems:

- How to reduce the search space?
- Optimize against other types of attacks: meet-in-the-middle attacks, key-recoveries, ...

Thank you for your attention!