
Transistor: a TFHE-friendly Stream Cipher

Christina Boura
IRIF, Université Paris Cité

(joint work with Jules Baudrin, Sonia Beläıd, Nicolas Bon, Anne Canteaut, Gaëtan Leurent,
Pascal Paillier, Léo Perrin, Matthieu Rivain, Yann Rotella, and Samuel Tap)

1 / 32

Overview

1. Motivation

2. The TFHE Scheme

3. Our Design

4. Security Analysis

2 / 32

Plan

1. Motivation

2. The TFHE Scheme

3. Our Design

4. Security Analysis

3 / 32

Motivation

Alice Server

Alice wants to perform operations on her data but needs to outsource the processing.

4 / 32

Motivation

Alice Server

Alice encrypts her data to protect its confidentiality.

4 / 32

Motivation

Alice Server

The server receives the encrypted data.

4 / 32

Motivation

Alice Server

The server needs to decrypt to process the data, which breaks confidentiality!

4 / 32

Fully Homomorphic Encryption (FHE)

FHE allows arbitrary computations to be performed directly on encrypted data without
needing to decrypt it:

Decrypt(Evaluate(f,Encrypt(m))) = f(m)

Alice can now homomorphically encrypt her data and send it to the cloud.

But:

• FHE operations are computationally intensive.

• Homomorphic ciphertexts are significantly larger than plaintexts, leading to increased
communication costs.

5 / 32

Fully Homomorphic Encryption (FHE)

FHE allows arbitrary computations to be performed directly on encrypted data without
needing to decrypt it:

Decrypt(Evaluate(f,Encrypt(m))) = f(m)

Alice can now homomorphically encrypt her data and send it to the cloud.

But:

• FHE operations are computationally intensive.

• Homomorphic ciphertexts are significantly larger than plaintexts, leading to increased
communication costs.

5 / 32

Fully Homomorphic Encryption (FHE)

FHE allows arbitrary computations to be performed directly on encrypted data without
needing to decrypt it:

Decrypt(Evaluate(f,Encrypt(m))) = f(m)

Alice can now homomorphically encrypt her data and send it to the cloud.

But:

• FHE operations are computationally intensive.

• Homomorphic ciphertexts are significantly larger than plaintexts, leading to increased
communication costs.

5 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

ES
Km

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

ES
Km

EHK

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

ES
Km

EHK

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

ES
Km

EHK

H.Eval(DS)

cH(m)

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

ES
Km

EHK

H.Eval(DS)

cH(m)

H.Eval(f)

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

ES
Km

EHK

H.Eval(DS)

cH(m)

H.Eval(f)
cH(f(m))

DH

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

ES
Km

EHK

H.Eval(DS)

cH(m)

H.Eval(f)
cH(f(m))

DH

f(m)

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
6 / 32

Plan

1. Motivation

2. The TFHE Scheme

3. Our Design

4. Security Analysis

7 / 32

TFHE (2016)

TFHE: Fast Fully Homomorphic Encryption over the Torus

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachène

• Based on the Learning With Errors (LWE) problem.

• Very fast for the FHE standards.

• Programmable bootstrapping: Evaluation of encrypted look-up tables (LUT) while
resetting the noise level.

• But: Operations should be limited on small plaintexts (typically less than 6 bits).

8 / 32

TFHE: Description of the Scheme
Discretized torus Tp = {ap | a ∈ Zp}.

Plaintext space Tp

The size of p ∈ N is only a few bits.

Ciphertext space Tq

q = 232 or q = 264

Acknowledgment: Thanks to Nicolas Bon for the figures of TFHE.
9 / 32

TFHE: Description of the Scheme

Natural embedding of Tp into Tq : m 7→
⌊
mq
p

⌉
.

10 / 32

Encryption Process

Encoding: m ∈ Tp 7→ m̃ ∈ Tq

Adding noise: m̃+ e, with e
$← χσ

11 / 32

Encryption Process

Encoding: m ∈ Tp 7→ m̃ ∈ Tq

Adding noise: m̃+ e, with e
$← χσ

11 / 32

Encryption Process

Mask a = (a1, . . . , an) ∈ Zn
q .

Secret key sk = (s1, . . . , sn) ∈ {0, 1}n.

12 / 32

Encryption Process

Ciphertext: c = (a1, . . . , an, b)

where b =

n∑
i=1

ai · si + m̃+ e.

13 / 32

Homomorphic Operations

Sum of ciphertexts

Let c1 and c2 be two ciphertexts encrypting m1 and m2 with noise levels σ2
1 and σ2

2,
respectively. The noise level of the ciphertext encrypting m1 +m2 is σ2

1 + σ2
2.

Product with a cleartext

Let c be a ciphertext encrypting m with noise σ2. Multiplying each coordinate of c by a
constant λ ∈ Z produces a valid ciphertext c′, which encrypts m′ = λ ·m with noise
λ2 · σ2.

14 / 32

Programmable Bootstrapping (PBS)

Bootstrapping

Generic technique introduced by Gentry that allows the noise of a ciphertext to be reset
to a nominal level.

• In TFHE, bootstrapping is implemented in a programmable manner: while the noise
is being reset, any arbitrary function can be evaluated on the ciphertext.

15 / 32

Timing of a PBS

16 / 32

Transciphering: State of the Art

• LowMC (2016)

• Kreyvium (2016)

• FLIP (2016)

• FiLIP (2020)

• Elisabeth (2022)

• Elisabeth-b, Gabriel and Margrethe (2023) (patches of Elisabeth)

• FRAST (2024)

• Elisabeth (and its successors) as well as FRAST were designed specifically for
TFHE.

• Trivium and Kreyvium provide good performance within the TFHE transciphering
framework.

17 / 32

Plan

1. Motivation

2. The TFHE Scheme

3. Our Design

4. Security Analysis

18 / 32

Design Choices

Plaintext space: Zp with p = 17

• p is odd (avoid dealing with negacyclicity)
• p is close to 24 (convenient for encoding nibbles)
• p is prime: Zp = Fp has a field structure

Non-linearity: S-box layer applying in parallel S: Z17 → Z17

• One PBS per S-box
• Minimize # PBS per element of the output stream

19 / 32

Transistor = Transciphering + Torus

• Transistor is a stream cipher that generates a keystream composed of elements
from F17.

• It generates tuples of 4 digits at once.

20 / 32

A High Level View of Transistor

• |K| = 64, |W| = 32.

21 / 32

The S-box

Table representation

S = [1, 12, 6, 11, 14, 3, 15, 5, 10, 9, 13, 16, 7, 8, 0, 2, 4]

Polynomial representation

S(x) = 1 + 4x1 + 13x2 + 7x3 + 16x4 + 15x5 + 5x7 + 5x8

+ 11x9 + 13x10 + 12x11 + 13x12 + 15x14 + x15 .

Cryptographic properties
• Almost Perfect Nonlinear (APN) permutation:

• S(x+ a) = S(x) + b has at most 2 solutions x for all a ̸= 0 and all b.

• Maximum algebraic degree.

22 / 32

The Linear Layer (MC)

M =


2 1 1 1
1 −1 1 −2
1 1 −2 −1
1 −2 −1 1


Design criterion

M should be MDS and its ℓ2-norm should be as low as possible.

The ℓ2-norm of M is defined as:

ℓ2(M) = max
i=1,2,3,4

√
M(i, 1)2 +M(i, 2)2 +M(i, 3)2 +M(i, 4)2.

23 / 32

The Silent LFSR

Homomorphic implementation of the LFSRs:

The naive approach: Maintain an encrypted state, and update it by computing a linear
combination with the feedback coefficients.

• Noise accumulates over time and needs periodic use of PBS operations to be
refreshed.

The silent approach: Computing on the fly the coefficients of the linear combinations in
clear, without updating an encrypted version of the internal state.

• The noise level remains stable over time.

Similar approach as in FLIP where a key state is queried without being updated.

24 / 32

Noise Evolution

25 / 32

Plan

1. Motivation

2. The TFHE Scheme

3. Our Design

4. Security Analysis

26 / 32

Security Analysis

Security Claim

Transistor provides 128 bits of security, assuming no more than 231 digits are generated
with a single master key/IV pair.

We analyzed the security of the cipher against:

• Time-Memory-Data trade-off attacks

• Guess and determine attacks

• Fast correlation attacks

• Algebraic attacks

27 / 32

Guess and Determine Attack

The attacker links the FSM state X(t) to the filter output S(t) by guessing digits of K(t).

1. Observe S(t) = φ(X(t)) = SD
(
K(t) +

(
MC ◦ SR(X(t−1))

))
[4,6,12,13]

.

2. Guess the 12 missing digits of K(t) to compute X(t).

Complexity: p
3
4
|K|+|W| (p = 17, |K| = 64 and |W| = 32).

28 / 32

(Fast) Correlation Attacks

Objective

Recover information about the initial state from the knowledge of the keystream.

Question: What is the smallest length of output sequence (S(t)) that can provide
information on the key-LFSR?

Theorem

The output of

F (3) : (X(t),K(t+1),K(t+2)) 7→ (S(t), S(t+1), S(t+2))

is statistically independent from (i.e., not correlated to) the key sequence.

29 / 32

Four consecutive outputs

Question: What is the data complexity to recover the internal state from the knowledge
of at least four consecutive outputs S(t), S(t+1), S(t+2), S(t+3)?

Proposition (Xiao-Massey lemma over Fp)

If the output of

F (n) : (X(t),K(t+1), . . . ,K(t+n−1)) 7→ (S(t), S(t+1), . . . , S(t+n−1))

is correlated to its key-input, then there exists a biased linear relation between the
key-inputs and the outputs of F (n).

30 / 32

Data complexity of fast correlation attacks
The data complexity of the best correlation attack based on a linear approximation

n−1∑
i=1

αi ·K(t+i) +

n−1∑
i=0

βi · S(t+i),∀t ≥ 0

is the inverse of

∆ =
p

64 ln p

(
L(S)
p

)2wn

where
• L(S) : maximal modulus of the Fourier coefficients of S
• wn =

∑n−1
i=1 wt(αi): # active S-boxes in the linear trail.

With MILP-based search

w4 ≥ 13, w5 ≥ 20, w6 ≥ 25, and wn ≥ 26 for n ≥ 7.

31 / 32

Benchmarks

Cipher perr Setup Latency Throughput

FRAST 2−80 25 s (8 threads) 6.2 s 20.66 bits/s

Transistor 2−128 No 251 ms 65.10 bits/s

Thanks for your attention!

32 / 32

Benchmarks

Cipher perr Setup Latency Throughput

FRAST 2−80 25 s (8 threads) 6.2 s 20.66 bits/s

Transistor 2−128 No 251 ms 65.10 bits/s

Thanks for your attention!

32 / 32

	Motivation
	The TFHE Scheme
	Our Design
	Security Analysis

