

Transistor: a TFHE-friendly Stream Cipher

Christina Boura

IRIF. Université Paris Cité

(joint work with Jules Baudrin, Sonia Belaïd, Nicolas Bon, Anne Canteaut, Gaëtan Leurent, Pascal Paillier, Léo Perrin, Matthieu Rivain, Yann Rotella, and Samuel Tap)

- 2. The TFHE Scheme
- 3. Our Design
- 4. Security Analysis

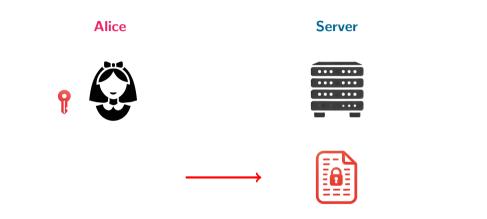
2. The TFHE Scheme

3. Our Design

4. Security Analysis

Alice wants to perform operations on her data but needs to **outsource** the processing.

Alice encrypts her data to protect its confidentiality.



The server receives the encrypted data.

The server needs to decrypt to process the data, which breaks confidentiality!

Fully Homomorphic Encryption (FHE)

FHE allows arbitrary computations to be performed directly on encrypted data without needing to decrypt it:

 $\mathsf{Decrypt}(\mathsf{Evaluate}(f, \mathsf{Encrypt}(m))) = f(m)$

Fully Homomorphic Encryption (FHE)

FHE allows arbitrary computations to be performed directly on encrypted data without needing to decrypt it:

 $\mathsf{Decrypt}(\mathsf{Evaluate}(f,\mathsf{Encrypt}(m))) = f(m)$

Alice can now homomorphically encrypt her data and send it to the cloud.

Fully Homomorphic Encryption (FHE)

FHE allows arbitrary computations to be performed directly on encrypted data **without needing to decrypt it**:

 $\mathsf{Decrypt}(\mathsf{Evaluate}(f,\mathsf{Encrypt}(m))) = f(m)$

Alice can now homomorphically encrypt her data and send it to the cloud.

But:

- FHE operations are computationally intensive.
- Homomorphic ciphertexts are significantly larger than plaintexts, leading to increased communication costs.

Alice wants to learn the application of f on her data m, by outsourcing the computation of f(m) to the server.

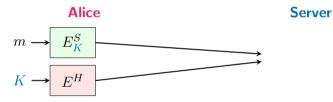
Alice

Server

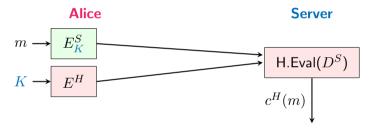
¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.

¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.

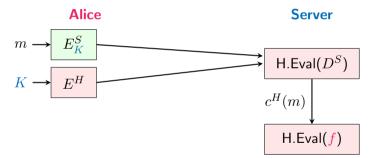
¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.



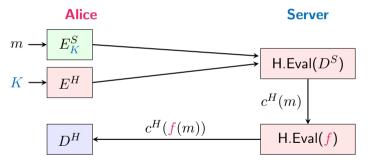
¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.



¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.

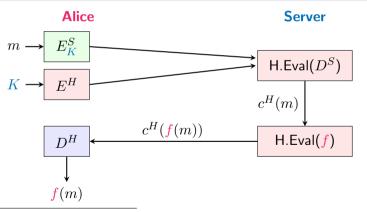


¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.



Université

¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.



¹M. Naehrig, K. Lauter, V. Vaikuntanathan. *Can homomorphic encryption be practical?* ACM 2011.

Université

2. The TFHE Scheme

3. Our Design

4. Security Analysis

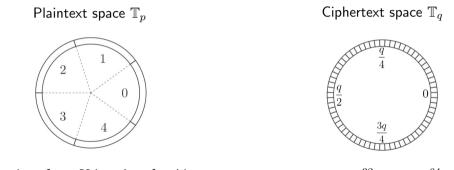
TFHE (2016)

TFHE: Fast Fully Homomorphic Encryption over the Torus Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachène

- Based on the Learning With Errors (LWE) problem.
- Very fast for the FHE standards.
- Programmable bootstrapping: Evaluation of encrypted look-up tables (LUT) while resetting the noise level.
- But: Operations should be limited on small plaintexts (typically less than 6 bits).

TFHE: Description of the Scheme

Discretized torus $\mathbb{T}_p = \{\frac{a}{p} | a \in \mathbb{Z}_p\}.$



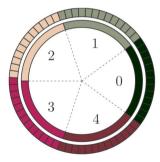
The size of $p \in \mathbb{N}$ is only a few bits.

 $q = 2^{32}$ or $q = 2^{64}$

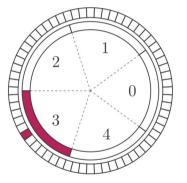
Acknowledgment: Thanks to Nicolas Bon for the figures of TFHE.

TFHE: Description of the Scheme

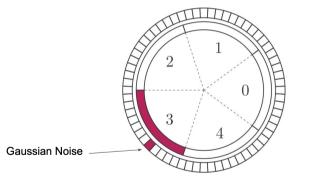
Natural embedding of \mathbb{T}_p into $\mathbb{T}_q : m \mapsto \left\lfloor \frac{mq}{p} \right\rfloor$.



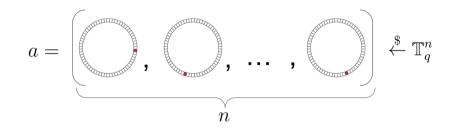
Encoding: $m \in \mathbb{T}_p \mapsto \widetilde{m} \in \mathbb{T}_q$



Adding noise: $\widetilde{m} + e$, with $e \xleftarrow{\$} \chi_{\sigma}$



Mask $a = (a_1, \ldots, a_n) \in \mathbb{Z}_q^n$.



Secret key sk = $(s_1, \ldots, s_n) \in \{0, 1\}^n$.

Ciphertext: $c = (a_1, \ldots, a_n, b)$

where
$$b = \sum_{i=1}^{n} a_i \cdot s_i + \tilde{m} + e.$$

Sum of ciphertexts

Let c_1 and c_2 be two ciphertexts encrypting m_1 and m_2 with noise levels σ_1^2 and σ_2^2 , respectively. The noise level of the ciphertext encrypting $m_1 + m_2$ is $\sigma_1^2 + \sigma_2^2$.

Product with a cleartext

Let c be a ciphertext encrypting m with noise σ^2 . Multiplying each coordinate of c by a constant $\lambda \in \mathbb{Z}$ produces a valid ciphertext c', which encrypts $m' = \lambda \cdot m$ with **noise** $\lambda^2 \cdot \sigma^2$.

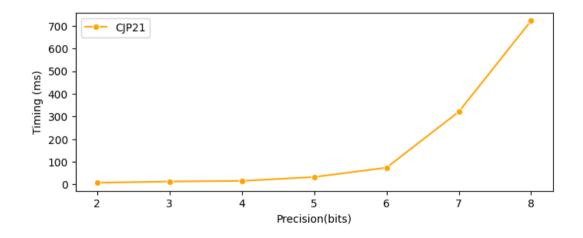
Programmable Bootstrapping (PBS)

Bootstrapping

Generic technique introduced by Gentry that allows the noise of a ciphertext to be reset to a nominal level.

• In **TFHE**, bootstrapping is implemented in a programmable manner: while the noise is being reset, any arbitrary function can be evaluated on the ciphertext.

Timing of a PBS



Transciphering: State of the Art

- LowMC (2016)
- Kreyvium (2016)
- FLIP (2016)
- FiLIP (2020)
- Elisabeth (2022)
- Elisabeth-b, Gabriel and Margrethe (2023) (patches of Elisabeth)
- FRAST (2024)
- Elisabeth (and its successors) as well as FRAST were designed specifically for TFHE.
- Trivium and Kreyvium provide good performance within the **TFHE** transciphering framework.

- 2. The TFHE Scheme
- 3. Our Design
- 4. Security Analysis

Design Choices

Plaintext space: \mathbb{Z}_p with p=17

- p is odd (avoid dealing with negacyclicity)
- p is close to 2^4 (convenient for **encoding nibbles**)
- p is **prime**: $\mathbb{Z}_p = \mathbb{F}_p$ has a field structure

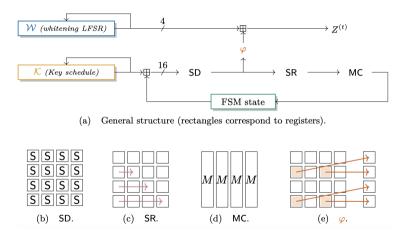
Non-linearity: S-box layer applying in parallel $S: \mathbb{Z}_{17} \to \mathbb{Z}_{17}$

- One PBS per S-box
- Minimize # PBS per element of the output stream

Transistor = Transciphering + Torus

- Transistor is a stream cipher that generates a keystream composed of elements from \mathbb{F}_{17} .
- It generates tuples of 4 digits at once.

A High Level View of Transistor



• $|\mathcal{K}| = 64, |\mathcal{W}| = 32.$

The S-box

Table representation

$$\mathsf{S} = [\mathsf{1}, \mathsf{12}, \mathsf{6}, \mathsf{11}, \mathsf{14}, \mathsf{3}, \mathsf{15}, \mathsf{5}, \mathsf{10}, \mathsf{9}, \mathsf{13}, \mathsf{16}, \mathsf{7}, \mathsf{8}, \mathsf{0}, \mathsf{2}, \mathsf{4}]$$

Polynomial representation

$$\begin{aligned} \mathsf{S}(x) &= 1 + 4x^1 + 13x^2 + 7x^3 + 16x^4 + 15x^5 + 5x^7 + 5x^8 \\ &+ 11x^9 + 13x^{10} + 12x^{11} + 13x^{12} + 15x^{14} + x^{15} \;. \end{aligned}$$

Cryptographic properties

• Almost Perfect Nonlinear (APN) permutation:

• S(x+a) = S(x) + b has at most 2 solutions x for all $a \neq 0$ and all b.

• Maximum algebraic degree.

The Linear Layer (MC)

$$M = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & -1 & 1 & -2 \\ 1 & 1 & -2 & -1 \\ 1 & -2 & -1 & 1 \end{pmatrix}$$

Design criterion

M should be **MDS** and its ℓ_2 -norm should be as low as possible.

The ℓ_2 -norm of M is defined as:

$$\ell_2(M) = \max_{i=1,2,3,4} \sqrt{M(i,1)^2 + M(i,2)^2 + M(i,3)^2 + M(i,4)^2}.$$

The Silent LFSR

Homomorphic implementation of the LFSRs:

The naive approach: Maintain an encrypted state, and update it by computing a linear combination with the feedback coefficients.

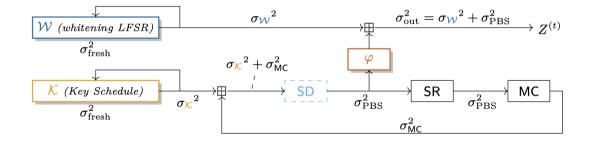
• Noise accumulates over time and needs periodic use of PBS operations to be refreshed.

The silent approach: Computing on the fly the coefficients of the linear combinations in clear, without updating an encrypted version of the internal state.

• The noise level remains stable over time.

Similar approach as in FLIP where a key state is queried without being updated.

Noise Evolution



- 2. The TFHE Scheme
- 3. Our Design
- 4. Security Analysis

Security Analysis

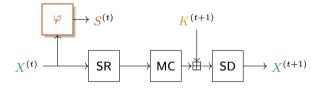
Security Claim

Transistor provides 128 bits of security, assuming no more than 2^{31} digits are generated with a single master key/IV pair.

We analyzed the security of the cipher against:

- Time-Memory-Data trade-off attacks
- Guess and determine attacks
- Fast correlation attacks
- Algebraic attacks

The attacker links the FSM state $X^{(t)}$ to the filter output $S^{(t)}$ by guessing digits of $K^{(t)}$.



- 1. Observe $S^{(t)} = \varphi(X^{(t)}) = SD(K^{(t)} + (MC \circ SR(X^{(t-1)})))_{[4,6,12,13]}$.
- 2. Guess the 12 missing digits of $K^{(t)}$ to compute $X^{(t)}$.

Complexity: $p^{\frac{3}{4}|\mathcal{K}|+|\mathcal{W}|}$ (p = 17, $|\mathcal{K}| = 64$ and $|\mathcal{W}| = 32$).

(Fast) Correlation Attacks

Objective

Recover information about the initial state from the knowledge of the keystream.

Question: What is the smallest length of output sequence $(S^{(t)})$ that can provide information on the key-LFSR?

Theorem

The output of

$$F^{(3)}: (X^{(t)}, \underline{K}^{(t+1)}, \underline{K}^{(t+2)}) \mapsto (\underline{S}^{(t)}, \underline{S}^{(t+1)}, \underline{S}^{(t+2)})$$

is statistically independent from (i.e., not correlated to) the key sequence.

Question: What is the data complexity to recover the internal state from the knowledge of at least four consecutive outputs $S^{(t)}, S^{(t+1)}, S^{(t+2)}, S^{(t+3)}$?

Proposition (Xiao-Massey lemma over \mathbb{F}_p)

If the output of

$$F^{(n)}: (X^{(t)}, \underline{K}^{(t+1)}, \dots, \underline{K}^{(t+n-1)}) \mapsto (\underline{S}^{(t)}, \underline{S}^{(t+1)}, \dots, \underline{S}^{(t+n-1)})$$

is correlated to its key-input, then there exists a biased linear relation between the key-inputs and the outputs of $F^{(n)}$.

Data complexity of fast correlation attacks

The data complexity of the best correlation attack based on a linear approximation

$$\sum_{i=1}^{n-1} \alpha_i \cdot \underline{K}^{(t+i)} + \sum_{i=0}^{n-1} \beta_i \cdot \underline{S}^{(t+i)}, \forall t \ge 0$$

is the inverse of

$$\Delta = \frac{p}{64\ln p} \left(\frac{\mathcal{L}(\mathsf{S})}{p}\right)^{2w_n}$$

where

- $\mathcal{L}(S)$: maximal modulus of the Fourier coefficients of S
- $w_n = \sum_{i=1}^{n-1} wt(\alpha_i)$: # active S-boxes in the linear trail.

With MILP-based search

 $w_4 \ge 13$, $w_5 \ge 20$, $w_6 \ge 25$, and $w_n \ge 26$ for $n \ge 7$.

Université

Cipher	p_{err}	Setup	Latency	Throughput
FRAST	2^{-80}	25 s (8 threads)	6.2 s	20.66 bits/s
Transistor	2^{-128}	No	251 ms	65.10 bits/s

Cipher	p_{err}	Setup	Latency	Throughput
FRAST	2^{-80}	25 s (8 threads)	6.2 s	20.66 bits/s
Transistor	2^{-128}	No	251 ms	65.10 bits/s

Thanks for your attention!