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Motivation

Alice Server

Alice wants to perform operations on her data but needs to outsource the processing.
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Motivation

Alice Server

Alice encrypts her data to protect its confidentiality.
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The server receives the encrypted data.

4 / 32



Motivation

Alice Server

The server needs to decrypt to process the data, which breaks confidentiality!
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Fully Homomorphic Encryption (FHE)

FHE allows arbitrary computations to be performed directly on encrypted data without
needing to decrypt it:

Decrypt(Evaluate(f,Encrypt(m))) = f(m)

Alice can now homomorphically encrypt her data and send it to the cloud.

But:

• FHE operations are computationally intensive.

• Homomorphic ciphertexts are significantly larger than plaintexts, leading to increased
communication costs.
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Transciphering1

Alice wants to learn the application of f on her data m, by outsourcing the computation
of f(m) to the server.

Alice Server

1M. Naehrig, K. Lauter, V. Vaikuntanathan. Can homomorphic encryption be practical? ACM 2011.
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TFHE (2016)

TFHE: Fast Fully Homomorphic Encryption over the Torus

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, Malika Izabachène

• Based on the Learning With Errors (LWE) problem.

• Very fast for the FHE standards.

• Programmable bootstrapping: Evaluation of encrypted look-up tables (LUT) while
resetting the noise level.

• But: Operations should be limited on small plaintexts (typically less than 6 bits).
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TFHE: Description of the Scheme
Discretized torus Tp = {ap | a ∈ Zp}.

Plaintext space Tp

The size of p ∈ N is only a few bits.

Ciphertext space Tq

q = 232 or q = 264

Acknowledgment: Thanks to Nicolas Bon for the figures of TFHE.
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TFHE: Description of the Scheme

Natural embedding of Tp into Tq : m 7→
⌊
mq
p

⌉
.
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Encryption Process

Encoding: m ∈ Tp 7→ m̃ ∈ Tq

Adding noise: m̃+ e, with e
$← χσ
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Encryption Process

Mask a = (a1, . . . , an) ∈ Zn
q .

Secret key sk = (s1, . . . , sn) ∈ {0, 1}n.
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Encryption Process

Ciphertext: c = (a1, . . . , an, b)

where b =

n∑
i=1

ai · si + m̃+ e.
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Homomorphic Operations

Sum of ciphertexts

Let c1 and c2 be two ciphertexts encrypting m1 and m2 with noise levels σ2
1 and σ2

2,
respectively. The noise level of the ciphertext encrypting m1 +m2 is σ2

1 + σ2
2.

Product with a cleartext

Let c be a ciphertext encrypting m with noise σ2. Multiplying each coordinate of c by a
constant λ ∈ Z produces a valid ciphertext c′, which encrypts m′ = λ ·m with noise
λ2 · σ2.
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Programmable Bootstrapping (PBS)

Bootstrapping

Generic technique introduced by Gentry that allows the noise of a ciphertext to be reset
to a nominal level.

• In TFHE, bootstrapping is implemented in a programmable manner: while the noise
is being reset, any arbitrary function can be evaluated on the ciphertext.
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Timing of a PBS
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Transciphering: State of the Art

• LowMC (2016)

• Kreyvium (2016)

• FLIP (2016)

• FiLIP (2020)

• Elisabeth (2022)

• Elisabeth-b, Gabriel and Margrethe (2023) (patches of Elisabeth)

• FRAST (2024)

• Elisabeth (and its successors) as well as FRAST were designed specifically for
TFHE.

• Trivium and Kreyvium provide good performance within the TFHE transciphering
framework.
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Design Choices

Plaintext space: Zp with p = 17

• p is odd (avoid dealing with negacyclicity)
• p is close to 24 (convenient for encoding nibbles)
• p is prime: Zp = Fp has a field structure

Non-linearity: S-box layer applying in parallel S: Z17 → Z17

• One PBS per S-box
• Minimize # PBS per element of the output stream
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Transistor = Transciphering + Torus

• Transistor is a stream cipher that generates a keystream composed of elements
from F17.

• It generates tuples of 4 digits at once.
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A High Level View of Transistor

• |K| = 64, |W| = 32.
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The S-box

Table representation

S = [1, 12, 6, 11, 14, 3, 15, 5, 10, 9, 13, 16, 7, 8, 0, 2, 4]

Polynomial representation

S(x) = 1 + 4x1 + 13x2 + 7x3 + 16x4 + 15x5 + 5x7 + 5x8

+ 11x9 + 13x10 + 12x11 + 13x12 + 15x14 + x15 .

Cryptographic properties
• Almost Perfect Nonlinear (APN) permutation:

• S(x+ a) = S(x) + b has at most 2 solutions x for all a ̸= 0 and all b.

• Maximum algebraic degree.
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The Linear Layer (MC)

M =


2 1 1 1
1 −1 1 −2
1 1 −2 −1
1 −2 −1 1


Design criterion

M should be MDS and its ℓ2-norm should be as low as possible.

The ℓ2-norm of M is defined as:

ℓ2(M) = max
i=1,2,3,4

√
M(i, 1)2 +M(i, 2)2 +M(i, 3)2 +M(i, 4)2.
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The Silent LFSR

Homomorphic implementation of the LFSRs:

The naive approach: Maintain an encrypted state, and update it by computing a linear
combination with the feedback coefficients.

• Noise accumulates over time and needs periodic use of PBS operations to be
refreshed.

The silent approach: Computing on the fly the coefficients of the linear combinations in
clear, without updating an encrypted version of the internal state.

• The noise level remains stable over time.

Similar approach as in FLIP where a key state is queried without being updated.
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Noise Evolution
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Security Analysis

Security Claim

Transistor provides 128 bits of security, assuming no more than 231 digits are generated
with a single master key/IV pair.

We analyzed the security of the cipher against:

• Time-Memory-Data trade-off attacks

• Guess and determine attacks

• Fast correlation attacks

• Algebraic attacks
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Guess and Determine Attack

The attacker links the FSM state X(t) to the filter output S(t) by guessing digits of K(t).

1. Observe S(t) = φ(X(t)) = SD
(
K(t) +

(
MC ◦ SR(X(t−1))

))
[4,6,12,13]

.

2. Guess the 12 missing digits of K(t) to compute X(t).

Complexity: p
3
4
|K|+|W| ( p = 17, |K| = 64 and |W| = 32).
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(Fast) Correlation Attacks

Objective

Recover information about the initial state from the knowledge of the keystream.

Question: What is the smallest length of output sequence (S(t)) that can provide
information on the key-LFSR?

Theorem

The output of

F (3) : (X(t),K(t+1),K(t+2)) 7→ (S(t), S(t+1), S(t+2))

is statistically independent from (i.e., not correlated to) the key sequence.
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Four consecutive outputs

Question: What is the data complexity to recover the internal state from the knowledge
of at least four consecutive outputs S(t), S(t+1), S(t+2), S(t+3)?

Proposition (Xiao-Massey lemma over Fp)

If the output of

F (n) : (X(t),K(t+1), . . . ,K(t+n−1)) 7→ (S(t), S(t+1), . . . , S(t+n−1))

is correlated to its key-input, then there exists a biased linear relation between the
key-inputs and the outputs of F (n).
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Data complexity of fast correlation attacks
The data complexity of the best correlation attack based on a linear approximation

n−1∑
i=1

αi ·K(t+i) +

n−1∑
i=0

βi · S(t+i),∀t ≥ 0

is the inverse of

∆ =
p

64 ln p

(
L(S)
p

)2wn

where
• L(S) : maximal modulus of the Fourier coefficients of S
• wn =

∑n−1
i=1 wt(αi): # active S-boxes in the linear trail.

With MILP-based search

w4 ≥ 13, w5 ≥ 20, w6 ≥ 25, and wn ≥ 26 for n ≥ 7.
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Benchmarks

Cipher perr Setup Latency Throughput

FRAST 2−80 25 s (8 threads) 6.2 s 20.66 bits/s

Transistor 2−128 No 251 ms 65.10 bits/s

Thanks for your attention!
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