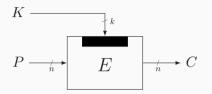
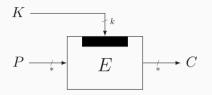
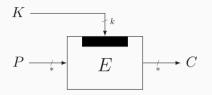

Efficient Instances of Docked Double Decker With AES, and Application to Authenticated Encryption

Christoph Dobraunig¹, Krystian Matusiewicz², <u>Bart Mennink</u>³, Alexander Tereschenko² ¹Intel USA, ²Intel Poland, ³Radboud University ASK 2024 December 16, 2024

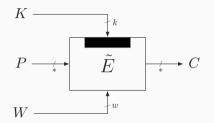

1/25

FSCADA

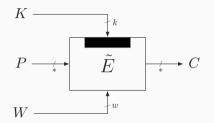

Introduction


- Plaintext P encrypted to ciphertext C with secret key K
- Fixed block size

- Plaintext P encrypted to ciphertext C with secret key K
- Fixed block size
- In order to encrypt variable sized messages, we need a mode of operation
 - These modes require a nonce



- Alternatively, we can design a wide block cipher
- A wide block cipher is a block cipher with a variable block size


- Alternatively, we can design a wide block cipher
- A wide block cipher is a block cipher with a variable block size
- Every part of the output (ideally) depends on every part of the input

Tweakable Wide Blockciphers

- A tweakable wide block cipher additionally has a tweak
- $\bullet\,$ Tweak W public, ciphertext completely changes with a different tweak

Tweakable Wide Blockciphers

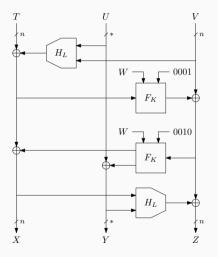
- A tweakable wide block cipher additionally has a tweak
- Tweak W public, ciphertext completely changes with a different tweak
- Useful for e.g. disk encryption, where every sector gets its own tweak

NIST's Incentive to Develop Accordion Mode

- March 2024: NIST announced quest for tweakable wide blockciphers
- There was a workshop (June 2024) aimed to discuss ideas on requirements, designs, security goals, targets, ...

NIST's Incentive to Develop Accordion Mode

- March 2024: NIST announced quest for tweakable wide blockciphers
- There was a workshop (June 2024) aimed to discuss ideas on requirements, designs, security goals, targets, ...
- Quote from the website: NIST plans to develop a new mode of the AES that is a tweakable, variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a reduction proof to the security of the underlying block cipher.


NIST's Incentive to Develop Accordion Mode

- March 2024: NIST announced quest for tweakable wide blockciphers
- There was a workshop (June 2024) aimed to discuss ideas on requirements, designs, security goals, targets, ...
- Quote from the website: *NIST plans to develop a new mode of the AES that is a tweakable, variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a reduction proof to the security of the underlying block cipher.*

This work: our suggested instantiation of docked double decker

Docked Double Decker

Docked Double Decker [GDM19]

Building Blocks

- F_K : stream cipher
- H_L : universal hash

Construction

- Feistel-like structure
- Outer lanes of fixed size
- Inner lane of variable size

Generic Security

- Assume
 - H_L is ϵ -XOR-universal
 - F_K is PRF-secure
- Adversary makes q queries and at most q_W queries per tweak W
- Docked double decker is secure up to approximately

$$\sum_{W \in \{0,1\}^w} \binom{q_W}{2} \epsilon + \mathbf{Adv}_F^{\mathrm{prf}}(2q)$$

Generic Security

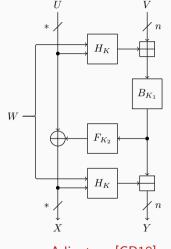
- Assume
 - H_L is ϵ -XOR-universal
 - F_K is PRF-secure
- Adversary makes q queries and at most q_W queries per tweak W
- Docked double decker is secure up to approximately

$$\sum_{W \in \{0,1\}^w} \binom{q_W}{2} \epsilon + \mathbf{Adv}_F^{\mathrm{prf}}(2q)$$

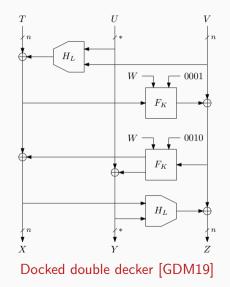
Implications

- Birthday bound secure in n in general case
- Security significantly increases when tweaks are not used too often

- Docked double decker is very suitable for disk encryption
 - Disks are separated in sectors
 - Block size is equal to the sector size
 - Physical sector number used as tweak


Application to Disk Encryption on SSDs

- Docked double decker is very suitable for disk encryption
 - Disks are separated in sectors
 - Block size is equal to the sector size
 - Physical sector number used as tweak
- Sectors in SSDs have a limited lifetime
 - They get damaged every time data is written
- The Kingston UV500 960 GB has $N=2^{28}$ sectors, where every sector can be written at most ≈ 500 times


Application to Disk Encryption on SSDs

- Docked double decker is very suitable for disk encryption
 - Disks are separated in sectors
 - Block size is equal to the sector size
 - Physical sector number used as tweak
- Sectors in SSDs have a limited lifetime
 - They get damaged every time data is written
- The Kingston UV500 960 GB has $N=2^{28}$ sectors, where every sector can be written at most ≈ 500 times
 - Without tweak separation, secure when $2\binom{500N}{2}\epsilon \approx 2^{74}\epsilon \ll 1$
 - With tweak separation this improves to $2N\binom{500}{2}\epsilon \approx 2^{46}\epsilon \ll 1$

Comparison with Adiantum

Adiantum [CB18]

Efficient Instantiation

Goals

- Instantiation using components as used in NIST standardized schemes:
 - AES [DR02, DR20]
 - Operations in binary extension fields, e.g., as in GHASH [MV04]

Goals

- Instantiation using components as used in NIST standardized schemes:
 - AES [DR02, DR20]
 - Operations in binary extension fields, e.g., as in GHASH [MV04]
- Present birthday bound secure *ddd-AES* and beyond birthday bound secure *bbb-ddd-AES* that seamlessly fit NIST's accordion idea

Goals

- Instantiation using components as used in NIST standardized schemes:
 - AES [DR02, DR20]
 - Operations in binary extension fields, e.g., as in GHASH [MV04]
- Present birthday bound secure *ddd-AES* and beyond birthday bound secure *bbb-ddd-AES* that seamlessly fit NIST's accordion idea

Hurdles

- AES is not a tweakable blockcipher
- AES is rather small (circular reasoning?)
- AES in typical stream cipher modes only gives birthday bound security

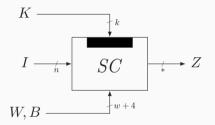
Polyval [GLL17]

- Operates on finite field $GF(2^{128})[x]/(x^{128} + x^{127} + x^{126} + x^{121} + 1)$
- Defined as follows, for a padded message (I_1, I_2, \ldots, I_s) :

$$Polyval_L(I_1, I_2, \dots, I_s) = \sum_{i=1}^s \left(L^{s-i+1} \cdot I_i \cdot x^{-128 \cdot (s-i+1)} \right)$$

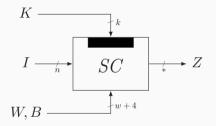
• We use zero-padding with length encoding

Polyval [GLL17]


- Operates on finite field $GF(2^{128})[x]/(x^{128} + x^{127} + x^{126} + x^{121} + 1)$
- Defined as follows, for a padded message (I_1, I_2, \ldots, I_s) :

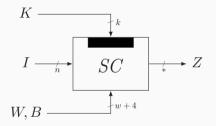
$$Polyval_L(I_1, I_2, \dots, I_s) = \sum_{i=1}^s \left(L^{s-i+1} \cdot I_i \cdot x^{-128 \cdot (s-i+1)} \right)$$

- We use zero-padding with length encoding
- Polyval is ϵ -XOR-universal with $\epsilon = m_{\rm max}/2^{128}$ [GLL17]


Stream Cipher Instantiation

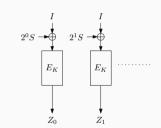
Recall Goal

Stream Cipher Instantiation

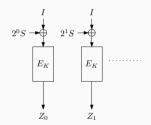

Recall Goal

• Construction should be built on top of AES

Stream Cipher Instantiation


Recall Goal

- Construction should be built on top of AES
- We give one construction with birthday bound security one construction with beyond birthday bound security


XE-style [Rog04] Tweakable Blockcipher in Counter Mode

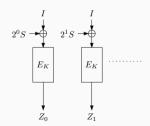
• Let
$$S = E_K(B \| W)$$

XE-style [Rog04] Tweakable Blockcipher in Counter Mode

• Let $S = E_K(B \| W)$

• Stream cipher (and thus ddd-AES) is $2^{n/2}$ PRF-secure

Bonus: Extension ddd- AES^+ to Accommodate Variable-Length Tweaks

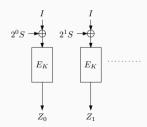

- ddd-AES almost seamlessly fits NIST's accordion idea
- Only thing missing: variable-length tweaks

Bonus: Extension ddd- AES^+ to Accommodate Variable-Length Tweaks

- ddd-AES almost seamlessly fits NIST's accordion idea
- Only thing missing: variable-length tweaks

XE⁺-style [Rog04] Tweakable Blockcipher in Counter Mode

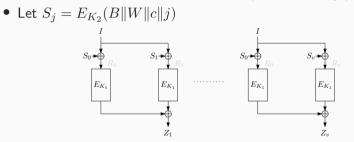
- Pad B, W into $(W_0, W_1, \ldots, W_{l-1} \| B' \| 0^*)$ with $B' = B \oplus 1000$
- Let $S = E_K(W_0 \| 0) \oplus E_K(W_1 \| 1) \oplus \dots \oplus E_K(W_{l-1} \| B' \| 0^* \| (l-1))$



Bonus: Extension ddd- AES^+ to Accommodate Variable-Length Tweaks

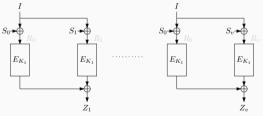
- *ddd-AES* almost seamlessly fits NIST's accordion idea
- Only thing missing: variable-length tweaks

XE⁺-style [Rog04] Tweakable Blockcipher in Counter Mode


- Pad B, W into $(W_0, W_1, \ldots, W_{l-1} || B' || 0^*)$ with $B' = B \oplus 1000$
- Let $S = E_K(W_0 \| 0) \oplus E_K(W_1 \| 1) \oplus \dots \oplus E_K(W_{l-1} \| B' \| 0^* \| (l-1))$

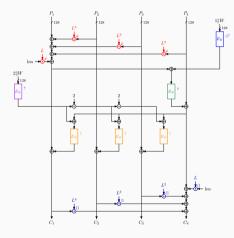
• Stream cipher (and thus ddd- AES^+) is $2^{n/2}$ PRF-secure

\widetilde{XORP} PRF in Counter Mode

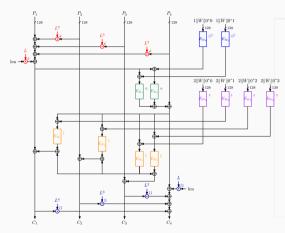

- XORP: XORP as used in CENC [lwa06], and extended to include tweak
 - Introduction is new and comes with separate security proof

\widetilde{XORP} PRF in Counter Mode

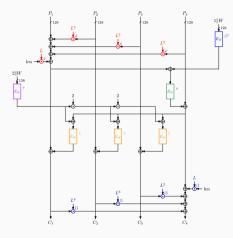
- XORP: XORP as used in CENC [lwa06], and extended to include tweak
 - Introduction is new and comes with separate security proof

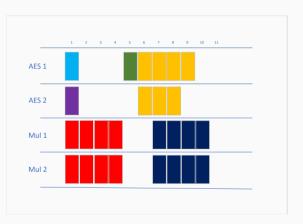

• Let
$$S_j = E_{K_2}(B \| W \| c \| j)$$

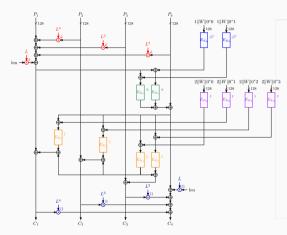
- Corresponding stream cipher runs XORP in counter mode
- Stream cipher (and thus *bbb-ddd-AES*) is $2^{2n/3}$ PRF-secure when tweaks are not used too often


Efficiency

Implementation Design of *ddd-AES* (512-Bit Message)




Implementation Design of *bbb-ddd-AES* (512-Bit Message)



Implementation Design of *ddd-AES* (1024-Bit Message)

Implementation Design of *bbb-ddd-AES* (1024-Bit Message)

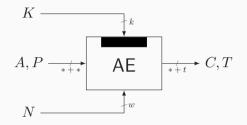
Benchmarks

Benchmarks

- *ddd-AES* and *bbb-ddd-AES* on an Intel[®] Core[™] i7-10610U
- C implementation using AES-NI and PCLMULQDQ

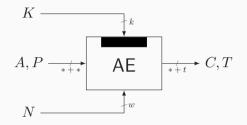
Message length (bytes)	32	48	64	96	128	256	512	1024	2048
ddd - $AES \times 1$	6	4.3	3.4	2.8	2.5	2.3	2.2	2.1	2.1
ddd - $AES \times 2$	6	3.9	3.2	2.5	2.0	1.7	1.5	1.3	1.3
ddd - $AES \times 3$	9	4.6	3.1	2.5	2.1	1.4	1.2	1.1	1.0
ddd - $AES \times 4$	$\overline{7}$	4.3	3.5	2.6	2.3	1.6	1.3	1.1	1.0
ddd - $AES \times 5$	8	4.6	3.8	2.4	2.2	1.5	1.2	1.1	1.0
ddd - $AES \times 6$	7	4.6	3.6	2.9	2.1	1.7	1.2	1.1	1.0
bbb - ddd - $AES \times 1$	8	5.0	4.0	3.2	2.9	2.6	2.5	2.5	2.5
bbb - ddd - $AES \times 2$	9	5.1	3.9	3.0	2.6	1.9	1.6	1.4	1.3
bbb - ddd - $AES \times 3$	8	5.2	3.8	3.0	2.5	1.7	1.4	1.2	1.1
bbb - ddd - $AES \times 4$	8	5.0	4.1	3.0	2.8	1.9	1.4	1.2	1.1
bbb - ddd - $AES \times 5$	9	5.9	4.1	2.8	2.8	1.7	1.5	1.3	1.2
<i>bbb-ddd-AES</i> ×6	9	5.2	4.4	3.3	2.6	2.0	1.4	1.3	1.2

Benchmarks

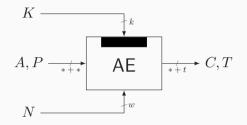

- *ddd-AES* and *bbb-ddd-AES* on an Intel[®] Core[™] i7-10610U
- C implementation using AES-NI and PCLMULQDQ

Message length (bytes)	32	48	64	96	128	256	512	1024	2048
ddd - $AES \times 1$	6	4.3	3.4	2.8	2.5	2.3	2.2	2.1	2.1
ddd - $AES \times 2$	6	3.9	3.2	2.5	2.0	1.7	1.5	1.3	1.3
ddd - $AES \times 3$	9	4.6	3.1	2.5	2.1	1.4	1.2	1.1	1.0
ddd - $AES \times 4$	$\overline{7}$	4.3	3.5	2.6	2.3	1.6	1.3	1.1	1.0
ddd - $AES \times 5$	8	4.6	3.8	2.4	2.2	1.5	1.2	1.1	1.0
$ddd\text{-}AES \times 6$	7	4.6	3.6	2.9	2.1	1.7	1.2	1.1	1.0
bbb - ddd - $AES \times 1$	8	5.0	4.0	3.2	2.9	2.6	2.5	2.5	2.5
bbb - ddd - $AES \times 2$	9	5.1	3.9	3.0	2.6	1.9	1.6	1.4	1.3
bbb - ddd - $AES \times 3$	8	5.2	3.8	3.0	2.5	1.7	1.4	1.2	1.1
bbb - ddd - $AES \times 4$	8	5.0	4.1	3.0	2.8	1.9	1.4	1.2	1.1
bbb - ddd - $AES \times 5$	9	5.9	4.1	2.8	2.8	1.7	1.5	1.3	1.2
bbb - ddd - $AES \times 6$	9	5.2	4.4	3.3	2.6	2.0	1.4	1.3	1.2

• For comparison, CBC encryption takes ≈ 1.4 cpb for 2048 byte messages


Application to Authenticated Encryption

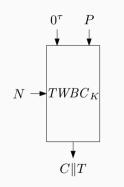
Authenticated Encryption


- Using key K:
 - Plaintext P is encrypted in ciphertext C
 - Associated data A and plaintext P are authenticated using T

Authenticated Encryption

- Using key K:
 - Plaintext P is encrypted in ciphertext C
 - \bullet Associated data A and plaintext P are authenticated using T
- $\bullet~$ Nonce N randomizes the scheme

Authenticated Encryption

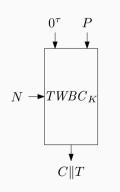


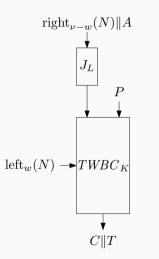
- Using key K:
 - Plaintext P is encrypted in ciphertext C
 - \bullet Associated data A and plaintext P are authenticated using T
- Nonce \boldsymbol{N} randomizes the scheme
- Decryption outputs message if and only if tag is correct

Basic Authenticated Encryption from Tweakable Wide Blockciphers

Robust Authenticated Encryption [HKR15]

- Encryption:
 - Prepend τ zeros to P
 - Evaluate with $TWBC_K$ to obtain C||T
- Decryption:
 - Decrypt $C \| T$ using $TWBC_K^{-1}$
 - If result starts with τ zeros: output P


Basic Authenticated Encryption from Tweakable Wide Blockciphers


Robust Authenticated Encryption [HKR15]

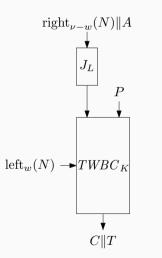
- Encryption:
 - Prepend τ zeros to P
 - Evaluate with $TWBC_K$ to obtain C||T
- Decryption:
 - Decrypt $C \| T$ using $TWBC_K^{-1}$
 - If result starts with τ zeros: output P

Limitations in Our Context

- No associated data (but ddd- AES^+ okay)
- Somewhat small nonce (124 bits for *ddd-AES* and 96 bits for *bbb-ddd-AES*)

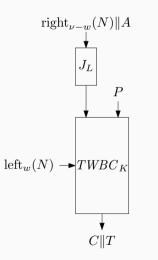
Building Blocks

- $TWBC_K$: tweakable wide blockcipher
- J_L : universal hash



Building Blocks

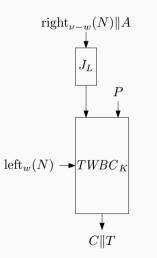
- $TWBC_K$: tweakable wide blockcipher
- J_L : universal hash


Rationale

- $\bullet \ N$ partially entered into tweak
- Rest of N and A hashed into $\tau\text{-bit string}$

Nonce-Respecting Setting

- $\operatorname{left}_w(N)$ unique for each *encryption* query
- Security analysis relies on fact that tweak to $TWBC_K$ is always new



Nonce-Respecting Setting

- $\operatorname{left}_w(N)$ unique for each *encryption* query
- Security analysis relies on fact that tweak to $TWBC_K$ is always new

Random Nonce Setting

- N is random for each *encryption* query
- Security analysis relies on multicollision bound on the left w bits of the nonce

Nonce-Respecting Setting

- $\operatorname{left}_w(N)$ unique for each *encryption* query
- Security analysis relies on fact that tweak to $TWBC_K$ is always new

Random Nonce Setting

- N is random for each *encryption* query
- Security analysis relies on multicollision bound on the left w bits of the nonce

Nonce-Misusing Setting

• Birthday bound security retained

Instances of Docked Double Decker

- ddd-AES, ddd-AES⁺, and bbb-ddd-AES
- Schemes come with security reduction to $\ensuremath{\mathit{AES}}$
- We also introduced authenticated encryption mode *aaa* for TWBCs
- Paper at https://eprint.iacr.org/2024/084

Instances of Docked Double Decker

- ddd-AES, ddd-AES⁺, and bbb-ddd-AES
- Schemes come with security reduction to $\ensuremath{\mathit{AES}}$
- We also introduced authenticated encryption mode *aaa* for TWBCs
- Paper at https://eprint.iacr.org/2024/084

Future Research

- Turning proposal to context committing ciphers (ccc)
- XORP is a tweakable blockcipher based PRF used in bbb-ddd-AES
- Only proven 2n/3-bit secure under limited tweak-reuse \rightarrow tightness?

Instances of Docked Double Decker

- ddd-AES, ddd-AES⁺, and bbb-ddd-AES
- Schemes come with security reduction to $\ensuremath{\mathit{AES}}$
- We also introduced authenticated encryption mode *aaa* for TWBCs
- Paper at https://eprint.iacr.org/2024/084

Future Research

- Turning proposal to context committing ciphers (*ccc*)
- XORP is a tweakable blockcipher based PRF used in *bbb-ddd-AES*
- Only proven 2n/3-bit secure under limited tweak-reuse \rightarrow tightness?

Thank you for your attention!

References i

Paul Crowley and Eric Biggers.

Adiantum: length-preserving encryption for entry-level processors. IACR Trans. Symmetric Cryptol., 2018(4):39–61, 2018.

Joan Daemen and Vincent Rijmen.

The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, 2002.

Joan Daemen and Vincent Rijmen.

The Design of Rijndael - The Advanced Encryption Standard (AES), Second Edition.

Information Security and Cryptography. Springer, 2020.

References ii

Aldo Gunsing, Joan Daemen, and Bart Mennink.

Deck-Based Wide Block Cipher Modes and an Exposition of the Blinded Keyed Hashing Model.

IACR Trans. Symmetric Cryptol., 2019(4):1–22, 2019.

Shay Gueron, Adam Langley, and Yehuda Lindell.
AES-GCM-SIV: Specification and Analysis.
Cryptology ePrint Archive, Report 2017/168, 2017.
http://eprint.iacr.org/2017/168.

References iii

Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway.

Robust Authenticated-Encryption AEZ and the Problem That It Solves. In Elisabeth Oswald and Marc Fischlin, editors, *Advances in Cryptology -EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I*, volume 9056 of *Lecture Notes in Computer Science*, pages 15–44. Springer, 2015.

References iv

Tetsu Iwata.

New Blockcipher Modes of Operation with Beyond the Birthday Bound Security.

In Matthew J. B. Robshaw, editor, *Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers,* volume 4047 of *Lecture Notes in Computer Science*, pages 310–327. Springer, 2006.

References v

David A. McGrew and John Viega.

The Security and Performance of the Galois/Counter Mode (GCM) of Operation.

In Anne Canteaut and Kapalee Viswanathan, editors, *Progress in Cryptology -INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India, December 20-22, 2004, Proceedings*, volume 3348 of *Lecture Notes in Computer Science*, pages 343–355. Springer, 2004.

References vi

Phillip Rogaway.

Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC.

In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004, 10th International Conference on the Theory and Application of Cryptology and Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer, 2004.