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The CCIse Of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]
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The CCIse Of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]
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The CCIse Of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]
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The CCIse Of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]
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Typical Proofs in the Classical World

The Case of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]

Database and Lazy Sampling

e A database dis a partial function d : {0,1}%"%> = {0,1}"uU { L }.

* The random function g can be lazy sampled and recorded as follows:
o Ifd(x) =L, thend(x) =v «—4 {0,1}"
e Return d(x)
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The CCIse Of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]
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The CCIse Of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]
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The CCIse Of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-lwata 2020]
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Typical Proofs in the Classical World

The Case of 4-round Luby-Rackoff (Luby-rackoft 1988]
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The Case of 4-round Luby-Rackoff (Luby-rackoft 1988]
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Typical Proofs in the Classical World

The Case of 4-round Luby-Rackoff (Luby-rackoft 1988]
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Typical Proofs in the Classical World

The Case of 4-round Luby-Rackoff (Luby-rackoft 1988]
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The Quantum World

Basics of Quantum Computing

* Data (State) is represented by unit vectors in the complex Hilbert space.
* Any n-qubit system Q is defined by C?.
e % ={0,1}"is mapped to the basis @? = { 10), ..., |2" — 1)} of C*.

e The state of Q is given by | ¢)Q c U (Czn), where

U (C?) = {Zam Zm\ _1}



The Quantum World

Basics of Quantum Computing

* All operations on a quantum state are unitary.”

e For any computable functionf: 2 — ¥

Uilx) @ |y) = |x) ® |y ® f(x)).
* Copying is forbidden!

No Cloning

Ulg)®1lp)=1¢)®|¢) _ 2
Uly) ® 1p) = y) ® ly) — P ly) = (Plw)

(@ly) =1orp|y) =0

* Self-adjoint matrices



The Quantum World

Basics of Quantum Computing

* Measurement collapses the state to one of the basis element probabilistically.

|¢>Q_.gE — | y) with probability | (v|¢)|”.
By
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Modelling Quantum Indistinguishability Game

| ¢q> = AQOAq—1 A0 | ¢p)

 State space of the game is given by #Z , = C° QC* ®C”.

e A operates on # ,and O only operates on C** ® C-.



The Quantum World

Modelling Quantum Indistinguishability Game

| ¢q> = AQOAq—1 A0 | ¢p)

 State space of the game is given by #Z , = C° QC* ®C”.
e A operates on # ,and O only operates on C** ® C-.
e Stateful Oracle: O operates on C?* ® C?* ® Z 5.

* State space of this updated game is given by Z , @ # ;.
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Simulating Random Function
The Recording Problem

* Random unitary representation:
e Sample f «—¢ F(m,n) and give access to RO = U,.

* No provision for recording entries.

* Defining badness is hard.



Simulating Random Function
The Recording Problem

* Random unitary representation:
e Sample f «—¢ F(m,n) and give access to RO = U,.

* No provision for recording entries.

* Defining badness is hard.

* Lazy Sampling (?)
Ui @ 130 @ {1 = 15)inn ® 1Y © 1) s ® [ {(x,10)})

* A curious adversary can detect this!



Zhandry’s Compressed Oracle

[Zhandry 2019]

* Standard Oracle
StO [ 2) 1, [ V) 0ue @ 1)y = 1% |y B X)) 00 ® | /)

e stO ~ RO if the database state is initialised in

A~ 1
0)=—sz 2 I

fe# (m,n)

Still there is no recording!



Zhandry’s Compressed Oracle

[Zhandry 2019]

* Standard Oracle
StO [ 2) 1, [ V) 0ue @ 1)y = 1% |y B X)) 00 ® | /)

e stO ~ RO if the database state is initialised in

A~ 1
0)=—sz 2 I

fe# (m,n)

e Zhandry’s seminal idea: stO in the Fourier view enables some recording

tO[X) | F) R /) = 1x)F) |/ +,,)

when z = x,
0,(2) = {y .
0 otherwise,



Zhandry’s Compressed Oracle

Databases and Compression

Database and Properties

Let I = {d: 10,1V" - {0,1} U { L }}. A property & is a subset of .

* Cell and Database Compression
comp :=|0)(L|+|L)0|+ ) IFXF|  comp=)d,,,® comp)
$#0 x
* Compressed Oracle

cO := comp - stO o comp



Zhandry’s Compressed Oracle

Transition Capacity

Transition Capacity

It measures the probability that a database not in property &
transitions into < after a single query.

Lemma [Chung et al. 2020]

TC(P) < max O (

yE Y du@y)e@\)
2n
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Revisiting the Case of LRWQ
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Proofs in the Quantum World

Revisiting the Case of LRWQ
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Adversarial query pattern is
unknown to the oracle.

Only database entries are
known.

Action of each function is
studied in sequence.

All the properties must be
defined over the database
entries only.
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Revisiting the Case of LRWQ
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Bad Databases (")

There exists entries (xy, vq), (X1, V1), (X3, V5), (X5, V5) € d such that

Vi@ v, =v @,




Proofs in the Quantum World

Revisiting the Case of LRWQ
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Proofs in the Quantum World

Revisiting the Case of LRWQ

?11 ?12 )il 312 * On action of f; for a fresh x;:
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Proofs in the Quantum World

ReViSiting the Case Of 4LR [Hosoyamada-lwata 2019, Bhaumik et al. 2024]
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Proofs in the Quantum World

ReViSiting the Case Of 4LR [Hosoyamada-lwata 2019, Bhaumik et al. 2024]
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Evasive Properties

A property is said to be evasive if and only if its corresponding relation depends on

certain oracle inputs while being independent of the corresponding oracle outputs.

* Some Examples:

* Trivial example: Functions adhering to Simon’s promise.
* Bad database property for LRQ (shaumik et al. 2023].
* Bad database property for LR.

* Bad database property for TNT and LRWQ [Hosoyamada-lwata 2020, Bhaumik et al. 2023, Mao et al. 2023].



Evasive Properties

A property is said to be evasive if and only if its corresponding relation depends on

certain oracle inputs while being independent of the corresponding oracle outputs.

* Some Examples:

* Trivial example: Functions adhering to Simon’s promise.
* Bad database property for LRQ (shaumik et al. 2023].
* Bad database property for LR.

"wA U/ w w \J NJ y \J \

s HGE=RWQ [Hosoyamada-lwata 2020, Bhaumik et al. 2023, Mao et al. 2023].

Last one is more of a definitional problem!



Evasive Properties

An Impossibility Result

Theorem (informal)

The transition capacity for any evasive property X is trivial,

i.e., TC(£) <L 1.

Thus, the quantum identical-up to-bad argument only works
for non-evasive properties.




Evasive Properties

An Impossibility Result

Theorem (informal)

The transition capacity for any evasive property X is trivial,

i.e., TC() < 1.

Thus, the quantum identical-up to-bad argument only works
for non-evasive properties.

The result also holds for multi-query progress measures.



Evasive Properties

Implications to Other Quantum Oracles

* Offshoots of Zhandry’s oracle are covered:
* Rosmanis’s Oracle [rosmanis 20211

* Unruh’s oracle [unruh 2023

® MMW perm UtatiOn OraC|e [Majenz-Malavolta-Walter 2024]
* Slightly different (reductionist) approach.

* Yet based on a progress measure and covered.



Conclusion

Zhandry’s oracle has transformed the study of average-case quantum query
complexity.

Several new results in symmetric provable security.

/CO toolkit remains incomplete, particularly in handling the class of evasive
properties.

Incorporating more algebraic tools may offer solutions, though average-case
analysis presents significant challenges.
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Zhandry’s oracle has transformed the study of average-case quantum query
complexity.

Several new results in symmetric provable security.

/CO toolkit remains incomplete, particularly in handling the class of evasive
properties.

Incorporating more algebraic tools may offer solutions, though average-case
analysis presents significant challenges.

Thank you!



