Evasive Properties

A Gap in the Quantum Oracles Zoo

Ashwin Jha

Ruhr University of Bochum

ASK 2024 @ Kolkata, India

The Indistinguishability Game

The Indistinguishability Game

Real world

Ideal world

The Indistinguishability Game

Real world

Ideal world

 $\mathbf{Adv}_{C}^{\$}(\mathscr{A}) := \left| \Pr(b = 1 \text{ in the real world}) - \Pr(b = 1 \text{ in the ideal world}) \right|$

$$f_1, f_2, f_3 \leftarrow -\$ \mathscr{F}(n, n)$$

The Case of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-Iwata 2020]

$$f_1, f_2, f_3 \leftarrow \mathfrak{F}(n, n)$$

Theorem [Liskov-Rivest-Wagner 2002]

$$\mathbf{Adv}_{\mathsf{LRWQ}}^{\$}(\mathscr{A}) = O\left(\frac{q^2}{2^n}\right)$$

$$F_3 \leftarrow -_{\$} \mathscr{F}(3n, n)$$

$$g \longleftarrow_{\$} \mathcal{F}(3n + 2,n)$$

$$f_1(x_1) = g(00 \parallel 0^{2n} \parallel x_1)$$

$$f_2(x_2) = g(01 \parallel 0^{2n} \parallel x_2)$$

$$f_3(u) = g(10 \parallel 0^{2n} \parallel u)$$

$$F_3(x_1, x_2, u) = g(11 \parallel x_1 \parallel x_2 \parallel u)$$

The Case of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-Iwata 2020]

Database and Lazy Sampling

- A database d is a partial function $d: \{0,1\}^{3n+2} \to \{0,1\}^n \cup \{\bot\}$.
- \bullet The random function g can be lazy sampled and recorded as follows:
 - If $d(x) = \bot$, then $d(x) = v \longleftarrow_{\$} \{0,1\}^n$
 - Return d(x)

The Case of LRWQ [Liskov-Rivest-Wagner 2002, Hosoyamada-Iwata 2020]

Good Databases

For any $i \in [q]$ and $j \le i - 1$ if

$$v_1^i \oplus v_2^i \neq v_1^j \oplus v_2^j$$

then LRWQ and LRWQ' behave identically.

$$\begin{split} \mathbf{Adv}_{\mathsf{LRWQ}}^{\$}(\mathscr{A}) &\leq \Pr\left(d_q \text{ is bad}\right) \\ &\leq \sum_{i=1}^q \Pr\left(d_i \text{ is bad} \mid d_{i-1} \text{ was good}\right) \\ &\leq \sum_{i=1}^q O\left(\frac{i-1}{2^n}\right) \leq O\left(\frac{q^2}{2^n}\right) \end{split}$$

The Case of 4-round Luby-Rackoff [Luby-Rackoff 1988]

$$f_1, f_2, f_3, f_4 \leftarrow -\$ \mathscr{F}(n, n)$$

The Case of 4-round Luby-Rackoff [Luby-Rackoff 1988]

$$f_1, f_2, f_3, f_4 \leftarrow _{\$} \mathscr{F}(n, n)$$

Theorem [Luby-Rackoff 1988]

$$\mathbf{Adv}_{\mathsf{4LR}}^{\$}(\mathscr{A}) = O\left(\frac{q^2}{2^n}\right)$$

The Case of 4-round Luby-Rackoff [Luby-Rackoff 1988]

The Case of 4-round Luby-Rackoff [Luby-Rackoff 1988]

The Case of 4-round Luby-Rackoff [Luby-Rackoff 1988]

Bad Databases

• For any $i \in [q]$ and $j \le i - 1$

$$v_2^i \oplus u_1^i = v_2^j \oplus u_1^j$$

• For any $i \in [q]$ and $j \le i-1$

$$v_3^i \oplus u_2^i = v_3^j \oplus u_2^j$$

The Case of 4-round Luby-Rackoff [Luby-Rackoff 1988]

$$\mathbf{Adv}_{\mathsf{4LR}}^{\$}(\mathscr{A}) \le \Pr\left(d_q \text{ is bad}\right) \le O\left(\frac{q^2}{2^n}\right)$$

Basics of Quantum Computing

Basics of Quantum Computing

- Data (State) is represented by unit vectors in the complex Hilbert space.
 - Any n-qubit system Q is defined by \mathbb{C}^{2^n} .
 - $\mathcal{Y}=\{0,1\}^n$ is mapped to the basis $\mathcal{B}_{\mathcal{Y}}=\{|0\rangle,...,|2^n-1\rangle\}$ of \mathbb{C}^{2^n} .
 - The state of Q is given by $|\hspace{.05cm} \phi \hspace{.05cm} \rangle_Q \in \mathcal{U}\left(\mathbb{C}^{2^n}\right)$, where

$$\mathscr{U}\left(\mathbb{C}^{2^n}\right) = \left\{ \sum_{i} \alpha_i |i\rangle : \sum_{i} |\alpha_i|^2 = 1 \right\}$$

Basics of Quantum Computing

- All operations on a quantum state are unitary.*
- For any computable function $f \colon \mathcal{X} \to \mathcal{Y}$

$$\mathbf{U}_f|x\rangle\otimes|y\rangle=|x\rangle\otimes|y\oplus f(x)\rangle.$$

Copying is forbidden!

No Cloning

$$\begin{array}{ccc}
\mathbf{U}|\phi\rangle\otimes|\rho\rangle = |\phi\rangle\otimes|\phi\rangle \\
\mathbf{U}|\psi\rangle\otimes|\rho\rangle = |\psi\rangle\otimes|\psi\rangle
\end{array}
\Longrightarrow \langle\phi|\psi\rangle = \langle\phi|\psi\rangle^{2}$$

$$\langle \phi | \psi \rangle = 1 \text{ or } \langle \phi | \psi \rangle = 0$$

^{*} Self-adjoint matrices

Basics of Quantum Computing

Measurement collapses the state to one of the basis element probabilistically.

$$|\phi\rangle_Q \longrightarrow \bigoplus_{\mathcal{B}_{\mathcal{Y}}} |y\rangle$$
 with probability $|\langle y|\phi\rangle|^2$.

$$\mathbf{A}_q \quad \mathbf{A}_{q-1} \quad \dots \quad \mathbf{A}_1 \quad \mathbf{A}_0$$

$$\mathbf{A}_q\mathbf{O}\mathbf{A}_{q-1}$$
 ... $\mathbf{A}_1\mathbf{O}\mathbf{A}_0$

$$|\phi_q\rangle = \mathbf{A}_q \mathbf{O} \mathbf{A}_{q-1} \qquad \dots \qquad \mathbf{A}_1 \mathbf{O} \mathbf{A}_0 |\phi_0\rangle$$

- State space of the game is given by $\mathscr{H}_{\mathscr{A}} = \mathbb{C}^{2^m} \otimes \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^w}$.
- \mathbf{A}_i operates on $\mathcal{H}_{\mathcal{A}}$ and \mathbf{O} only operates on $\mathbb{C}^{2^m} \otimes \mathbb{C}^{2^n}$.

Modelling Quantum Indistinguishability Game

$$|\phi_q\rangle = A_q O A_{q-1}$$

 $A_1OA_0|\phi_0\rangle$

- State space of the game is given by $\mathcal{H}_{\mathcal{A}} = \mathbb{C}^{2^m} \otimes \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^w}$.
- \mathbf{A}_i operates on $\mathcal{H}_{\mathcal{A}}$ and \mathbf{O} only operates on $\mathbb{C}^{2^m} \otimes \mathbb{C}^{2^n}$.
- Stateful Oracle: **O** operates on $\mathbb{C}^{2^m} \otimes \mathbb{C}^{2^n} \otimes \mathcal{H}_{db}$.
 - State space of this updated game is given by $\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{db}$.

Simulating Random Function

Simulating Random Function

The Recording Problem

- Random unitary representation:
 - Sample $f \leftarrow \S \mathcal{F}(m,n)$ and give access to $\mathbf{RO} = \mathbf{U}_f$.
 - No provision for recording entries.
 - Defining badness is hard.

Simulating Random Function

The Recording Problem

- Random unitary representation:
 - Sample $f \leftarrow -\$ \mathcal{F}(m,n)$ and give access to $\mathbf{RO} = \mathbf{U}_f$.
 - No provision for recording entries.
 - Defining badness is hard.
- Lazy Sampling (?)

$$\mathbf{U}_f'|x\rangle_{in}\otimes|y\rangle_{out}\otimes|\{\}\rangle_{db}=|x\rangle_{in}\otimes|y\oplus u\rangle_{out}\otimes|\{(x,u)\}\rangle_{db}$$

A curious adversary can detect this!

Zhandry's Compressed Oracle

[Zhandry 2019]

Standard Oracle

stO
$$|x\rangle_{in}|y\rangle_{out}\otimes|f\rangle_{db}=|x\rangle_{in}|y\oplus f(x)\rangle_{out}\otimes|f\rangle_{db}$$

• $stO \approx RO$ if the database state is initialised in

$$|\widehat{\mathbf{0}}\rangle = \frac{1}{2^{n2^{m/2}}} \sum_{f \in \mathcal{F}(m,n)} |f\rangle$$

Still there is no recording!

Zhandry's Compressed Oracle

[Zhandry 2019]

Standard Oracle

stO
$$|x\rangle_{in}|y\rangle_{out}\otimes|f\rangle_{db}=|x\rangle_{in}|y\oplus f(x)\rangle_{out}\otimes|f\rangle_{db}$$

• $stO \approx RO$ if the database state is initialised in

$$|\hat{\mathbf{0}}\rangle = \frac{1}{2^{n2^{m/2}}} \sum_{f \in \mathcal{F}(m,n)} |f\rangle$$

ullet Zhandry's seminal idea: \mathbf{stO} in the Fourier view enables some recording

$$\mathbf{stO} | x \rangle | \hat{y} \rangle \otimes | \hat{f} \rangle = | x \rangle | \hat{y} \rangle \otimes | \hat{f} + \hat{\delta}_{xy} \rangle$$

$$\delta_{xy}(z) = \begin{cases} y & \text{when } z = x, \\ 0 & \text{otherwise,} \end{cases}$$

Zhandry's Compressed Oracle

Databases and Compression

Database and Properties

Let
$$\mathcal{D} = \{d: \{0,1\}^m \to \{0,1\}^n \cup \{\perp\}\}$$
. A property \mathcal{P} is a subset of \mathcal{D} .

Cell and Database Compression

$$\mathbf{comp}_{x} := |\widehat{0}\rangle\langle\perp|+|\perp\rangle\langle\widehat{0}|+\sum_{\widehat{y}\neq\widehat{0}}|\widehat{y}\rangle\langle\widehat{y}| \qquad \mathbf{comp} = \bigotimes_{x}(\mathbf{I}_{m+n}\otimes\mathbf{comp}_{x})$$

Compressed Oracle

$$cO := comp \circ stO \circ comp$$

Zhandry's Compressed Oracle

Transition Capacity

Transition Capacity

It measures the probability that a database not in property \mathscr{P} transitions into \mathscr{P} after a single query.

Lemma [Chung et al. 2020]

$$\mathsf{FC}(\mathscr{P}) \le \max_{x,d} O\left(\sqrt{\frac{|y \in \mathscr{Y}: d \cup (x,y) \in \mathscr{P}|}{2^n}}\right)$$

Revisiting the Case of LRWQ

Revisiting the Case of LRWQ

- Adversarial query pattern is unknown to the oracle.
- Only database entries are known.
- Action of each function is studied in sequence.
- All the properties must be defined over the database entries only.

Revisiting the Case of LRWQ

Bad Databases (%)

There exists entries $(x_1, v_1), (x_1', v_1'), (x_2, v_2), (x_2', v_2') \in d$ such that

$$v_1 \oplus v_2 = v_1' \oplus v_2'$$

Revisiting the Case of LRWQ

- On action of f_1 for a fresh x_1 :
 - $|\{y: y \oplus v_2 = v_1' \oplus v_2'\}| = O(q^3)$
- Similar bound for action of f_2 .
- Combining the two:

$$TC(\mathcal{P}) = O\left(\sqrt{\frac{q^3}{2^n}}\right)$$

Revisiting the Case of LRWQ

- On action of f_1 for a fresh x_1 :
 - $|\{y: y \oplus v_2 = v_1' \oplus v_2'\}| = O(q^3)$
- Similar bound for action of f_2 .
- Combining the two:

$$TC(\mathcal{P}) = O\left(\sqrt{\frac{q^3}{2^n}}\right)$$

Using the TDD framework [Bhaumik et al. 2023 and 2024], $\mathbf{Adv}^\$_{\mathsf{LRWQ}}(\mathscr{A}) = O\left(\sqrt{\frac{q^5}{2^n}}\right)$

Revisiting the Case of 4LR [Hosoyamada-Iwata 2019, Bhaumik et al. 2024]

Bad Databases

• There exists entries $(u_1, v_1), (u_1', v_1'), (u_2, v_2), (u_2', v_2') \in d$ such that

$$v_2 \oplus u_1 = v_2' \oplus u_1'$$

• For any $i \in [q]$ and $j \le i - 1$

$$v_3 \oplus u_2 = v_3' \oplus u_2'$$

Revisiting the Case of 4LR [Hosoyamada-Iwata 2019, Bhaumik et al. 2024]

- On action of f_1 for a fresh x_1 :
 - $|\{y: x_1 \oplus v_2 = u_1' \oplus v_2'\}| = O(2^n)$
- The property is independent of the oracle outputs.
- This results in a trivial upper bound!
- The phenomena persists even with arbitrarily large number of rounds.

A property is said to be evasive if and only if its corresponding relation depends on certain oracle inputs while being independent of the corresponding oracle outputs.

- Some Examples:
 - Trivial example: Functions adhering to Simon's promise.
 - Bad database property for LRQ [Bhaumik et al. 2023].
 - Bad database property for LR.
 - Bad database property for TNT and LRWQ [Hosoyamada-Iwata 2020, Bhaumik et al. 2023, Mao et al. 2023].

A property is said to be evasive if and only if its corresponding relation depends on certain oracle inputs while being independent of the corresponding oracle outputs.

- Some Examples:
 - Trivial example: Functions adhering to Simon's promise.
 - Bad database property for LRQ [Bhaumik et al. 2023].
 - Bad database property for LR.
 - Bad database property for TNT and LRWQ [Hosoyamada-Iwata 2020, Bhaumik et al. 2023, Mao et al. 2023].

Last one is more of a definitional problem!

An Impossibility Result

Theorem (informal)

The transition capacity for any evasive property \mathscr{P} is trivial, i.e., $\mathsf{TC}(\mathscr{P}) \leq 1$.

Thus, the quantum identical-up to-bad argument only works for non-evasive properties.

An Impossibility Result

Theorem (informal)

The transition capacity for any evasive property \mathscr{P} is trivial, i.e., $\mathsf{TC}(\mathscr{P}) \leq 1$.

Thus, the quantum identical-up to-bad argument only works for non-evasive properties.

The result also holds for multi-query progress measures.

Implications to Other Quantum Oracles

- Offshoots of Zhandry's oracle are covered:
 - Rosmanis's Oracle [Rosmanis 2021]
 - Unruh's oracle [Unruh 2023]
- MMW permutation oracle [Majenz-Malavolta-Walter 2024]
 - Slightly different (reductionist) approach.
 - Yet based on a progress measure and covered.

Conclusion

- Zhandry's oracle has transformed the study of average-case quantum query complexity.
- Several new results in symmetric provable security.
- ZCO toolkit remains incomplete, particularly in handling the class of evasive properties.
- Incorporating more algebraic tools may offer solutions, though average-case analysis presents significant challenges.

Conclusion

- Zhandry's oracle has transformed the study of average-case quantum query complexity.
- Several new results in symmetric provable security.
- ZCO toolkit remains incomplete, particularly in handling the class of evasive properties.
- Incorporating more algebraic tools may offer solutions, though average-case analysis presents significant challenges.

Thank you!