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Moving away from boxes of functions
• Algebraic (or Arithmetization Oriented) design requires polynomial based approach


• Understand and study the polynomial instantiations in a compact way


• Impact can be beyond AO constructions
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• Towards polynomial based construction


• How to define a (suitable) polynomial system?


• How to characterise the polynomials defining such a system?


• How to instantiate?  



How do we construct block ciphers?
SPN Network

• Let   be permutation polynomial     f : 𝔽q ↦ 𝔽q

𝒮 :

x1
x2
⋅
⋅
xn

↦

f(x1)
f(x2)

⋅
⋅

f(xn)

• Let  i.e. an invertible matrix over  


• Iterate: 


• Ignoring the key and constant addition (can be combined with linear transformation with slight 
modification)

An×n ∈ GLn(𝔽q) 𝔽q

𝒮 ∘ A ∘ 𝒮 ∘ ⋯ ∘ 𝒮
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How do we construct block ciphers?
Fesitel Network 

• Let  for  be a polynomial (may or may not be permutation)


• Balanced Feistel e.g. 


• Let  be such that 

p : 𝔽n
q ↦ 𝔽n

q n ≥ 1

n = 2

F : 𝔽2
q ↦ 𝔽2

q

F : [x1
x2] ↦ [ x1

x1 + p(x2)]
• Let  where  and 


• Iterate : 

A : [x1 x2] ↦ [xσ(1) xσ(2)] σ ∈ S2 σ ≠ 𝗂𝖽

𝒮 ∘ A ∘ 𝒮 ∘ ⋯ ∘ 𝒮

• Similarly we can define other Feistel Networks (balanced and unbalanced)
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Why?  
• Isn’t it obvious? Any function over  can be represented with a polynomial 

• The boxed approach has offered limited algebraic understanding (so far)


• Current approach do not characterise polynomials but study a function w.r.t (known) cryptanalytic 
properties e.g. differential and linear properties


• More importantly: Why?


• Efficient polynomial evaluation : Low multiplicative complexity (in AO primitives, SCA resilient design)


• Polynomial with desired cryptanalytic property


• Efficient implementation  


• ….


• We aim for an algebraically structured way  

𝔽q
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Polynomial based approach
• Results in Mathematics: polynomial dynamical system


• Iterative polynomial system (over finite field) 
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• Example of studied properties


• Randomness ( using discrepancy notion )  


• Period ( with specific polynomial e.g.  ) 


• Degree growth 


• … 

f(x) = x3 + c

• Provides a good starting point



Triangular Dynamical System
• Introduced by Ostafe and Shparlinski (2010)

f1(x1, …, xn) = x1 ⋅ g1(x2, …, xn) + h1(x2, …, xn)
f2(x1, …, xn) = x2 ⋅ g1(x3, …, xn) + h1(x3, …, xn)…………

fn−1(x1, …, xn) = xn−1 ⋅ gn−1(xn) + hn−1(xn)
fn(x1, …, xn) = xn

•  for finite 


• The TDS is defined by 

gi, fi ∈ 𝔽q[x1, …, xn] n ∈ ℕ

ℱ = {f1, …, fn} ⊂ 𝔽q[x1, …, xn]
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Triangular dynamical system 

• Shows polynomial degree growth under iteration


• PRNG with  was investigated using the discrepancy notion


• Polynomial degree growth  low discrepancy


• A hash function based on TDS was proposed 

ℱ

⟹
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Generalised triangular dynamical system
• A generalisation of TDS [ joint work with Matthias Steiner, SAC’24 ]

f1(x1, …, xn) = p(x1) ⋅ g1(x2, …, xn) + h1(x2, …, xn)
f2(x1, …, xn) = p(x2) ⋅ g1(x3, …, xn) + h1(x3, …, xn)…………

fn−1(x1, …, xn) = p(xn−1) ⋅ gn−1(xn) + hn−1(xn)
fn(x1, …, xn) = p(xn)

• Aim: define a permutation with 


•  are permutations;  are such that  have no zeros


• The GTDS is defined by 

ℱ

pi ∈ 𝔽q[xi] gi, hi ∈ 𝔽q[xi+1, …, xn] gi

ℱ ⊂ 𝔽q[x1, …, xn]
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Invertibility: polynomial characterisation 
• For given 


• Consider  for 


• 


• 


• And so on 


• Finding  with no zeros is non-trivial in general 


• When  is prime a trivial instantiation is:  s.t.  is non-square modulo q


• More general  can be build in from 

β = (β1, …, βn) ∈ 𝔽n
q

fi i = n, …,1

pn(xn) = βn ⟹ xn = p−1
n (βn)

pn−1(xn−1)gn−1(xn) + hn−1(xn) = βn−1 ⟹ pn−1(xn−1) =
βn−1 − hn−1(xn)

gn−1(xn)

gi ∈ 𝔽q(xi+1, …, xn)

q g(x) = x2 + a ⋅ x + b b2 − 4a

gi g
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GTDS instantiations (well-known) 
• SPN and partial SPN


• 


• Generalised Feistel 


• 


• Example 


• Feistel with contracting RF


• Feistel with expanding RF


• …


• Balanced Feistel


• Can be composition of more than one  (with same 
GTDS structure but different instantiations) 

gi = 1,hi = 0,∀i

pi(xi) = xi, gi = 1

ℱ

Recall GTDS


f1(x1, …, xn) = p(x1) ⋅ g1(x2, …, xn) + h1(x2, …, xn)
f2(x1, …, xn) = p(x2) ⋅ g1(x3, …, xn) + h1(x3, …, xn)…………

fn−1(x1, …, xn) = p(xn−1) ⋅ gn−1(xn) + hn−1(xn)
fn(x1, …, xn) = p(xn)
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Other instantiations
• GTDS gives Horst scheme [GHRSWW ’22, ’23]


•  where  such that  has no zeros


• Independent work from us at the same time 

[xL
xR] ↦ [ xR

xL ⋅ g(xR) + h(xR)] g, h ∈ 𝔽q[x] g

x1
x2
x3

↦
xd

1

x2 ⋅ x2
1 + a1 ⋅ x1 + b1

x2
2 + a2 ⋅ x2 + b2

•  are integers such that  is prime,  and  is a non-square modulo pp, ai, bi, d p gcd(d, p − 1) = 1 b2
i − 4ai
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• Horst variations: Griffin and Reinforced Concrete 


• A mapping  defined as 𝔽3
p ↦ 𝔽3

p



GTDS: Motivation and consequence
• Disclaimer : it was neither the intention nor the motivation to define arbitrary SK 

primitive with polynomials (and linear transformations) 


• Motivation 


• Systematically investigate efficient AO primitive constructions


• Example criteria: Efficient polynomial evaluation (e.g. w.r.t bilinear gates)


• A polynomial based design approach  
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• Consequence 

• New constructions beyond Feistel, SPN and Lai-Massey, can be derived using GTDS


• A compact way to study a large set of cryptographic permutations and hash function


• Cryptanalytic properties in connection with polynomials ( more work needed )  



Generic cryptanalysis of GTDS
• Let  for , then


• Differential uniformity of  is 

δF(a, b) = |{x ∈ 𝔽n
q |F(x + a) − F(x) = b} | F : 𝔽n

q ↦ 𝔽m
q

F
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δ(F) = max
a∈𝔽n

q∖0,b∈𝔽m
q

δF(a, b)

• For GTDS  with  , for  we have


•  

ℱ 1 < δ(pi) < q 1 ≤ i ≤ n

δF(a, b) = Πn
i=1 {deg(pi), ai ≠ 0

q, ai = 0
• Almost the same bound as SPN


• Number of solutions can decrease with  and never increase more than SPN boundgi, hi



Generic cryptanalysis of GTDS
• For  and additive characters  the correlation of  is


•

𝔽n
q ↦ 𝔽n

q χ, ψ : 𝔽n
q ↦ ℂ F

CORRF(χ, ψ) =
1
qn ∑

x∈𝔽n
q

χ(F(x)) ⋅ ψ(x)
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• For GTDS with  we prove


•

gcd(deg(pi), q) = 1

CORRℱ(χ, ψ) ≤ max
1≤i≤n

deg(pi) − 1
q

• Gap with SPN bound


•
CORRℱ(χ, ψ) ≤

n

∏
i=1

deg(pi) − 1

q
, χ non-const. on xi

1, otherwise



New construction from GTDS
Arion (keyed) permutation

• First design utilising GTDS at round level [ joint work with Matthias Steiner and Stefano Trevisani ]


• Arion GTDS is defined as 

16

fi(x1, …, xn) = xd1
i ⋅ gi(σi+1,n) + h(σi+1,n) 1 ≤ i ≤ n − 1

fn(x1, …, xn) = xe

• Here 


•  are degree 2 polynomials such that  have no zeros


•  is prime,  be integers such that  and 

σi+1,n =
n

∑
j=i+1

fj(x1, …, xn) + xj

gi, hi ∈ 𝔽q[xi+1, …, xn] gi

q 1 < d1, d2 < q − 1 gcd(di, q − 1) = 1 e ⋅ d2 = 1 (mod q)



Conclusion
• Open problems


• Utilising GTDS beyond AO primitives, e.g. over small field  


• More generic cryptanalysis of GTDS and tighten cryptanalytic bound


• Impact of  in differential cryptanalysis bound


• Non-trivial degree growth bound


• ….

gi, hi
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THANK YOU!

Questions?
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