New Design Approach in Symmetric Cryptography

Arnab Roy University of Innsbruck

ASK 2024, Kolkata

Moving away from boxes of functions

- Algebraic (or Arithmetization Oriented) design requires polynomial based approach
- Understand and study the polynomial instantiations in a compact way
- Impact can be beyond AO constructions
- Towards polynomial based construction
 - How to define a (suitable) polynomial system?
 - How to characterise the polynomials defining such a system?
 - How to instantiate?

How do we construct block ciphers? **SPN Network**

• Let $f: \mathbb{F}_q \mapsto \mathbb{F}_q$ be permutation polynomial

- Let $A_{n \times n} \in GL_n(\mathbb{F}_q)$ i.e. an invertible matrix over \mathbb{F}_q
- Iterate: $\mathcal{S} \circ A \circ \mathcal{S} \circ \cdots \circ \mathcal{S}$
- modification)

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$$

Ignoring the key and constant addition (can be combined with linear transformation with slight

How do we construct block ciphers? **Fesitel Network**

- Let $p : \mathbb{F}_a^n \mapsto \mathbb{F}_a^n$ for $n \ge 1$ be a polynomial (may or may not be permutation)
- Balanced Feistel e.g. n = 2
 - Let $F : \mathbb{F}_a^2 \mapsto \mathbb{F}_a^2$ be such that

$$F: \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_1 + p(x_2) \end{bmatrix}$$

- Let $A: \begin{bmatrix} x_1 & x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_{\sigma(1)} & x_{\sigma(2)} \end{bmatrix}$ where $\sigma \in S_2$ and $\sigma \neq id$
- Iterate : $\mathcal{S} \circ A \circ \mathcal{S} \circ \cdots \circ \mathcal{S}$
- Similarly we can define other Feistel Networks (balanced and unbalanced)

Why?

- Isn't it obvious? Any function over \mathbb{F}_q can be represented with a polynomial
 - The boxed approach has offered limited algebraic understanding (so far)
 - ulletproperties e.g. *differential and linear* properties
- More importantly: Why?

 - Polynomial with desired cryptanalytic property
 - Efficient implementation
 -
- We aim for an *algebraically structured* way

Current approach do not characterise polynomials but study a function w.r.t (known) cryptanalytic

Efficient polynomial evaluation : Low multiplicative complexity (in AO primitives, SCA resilient design)

Polynomial based approach

- Results in Mathematics: polynomial dynamical system
- Iterative polynomial system (over finite field)
- Example of studied properties
 - Randomness (using **discrepancy** notion)
 - Period (with specific polynomial e.g.
 - Degree growth

• Provides a good starting point

$$f(x) = x^3 + c$$

Triangular Dynamical System

Introduced by Ostafe and Shparlinski (2010)

 $f_1(x_1, \ldots, x_n) = x_1 \cdot g_1(x_2, \ldots, x_n)$ $f_2(x_1, \ldots, x_n) = x_2 \cdot g_1(x_3, \ldots, x_n)$ $f_{n-1}(x_1, \dots, x_n) = x_{n-1} \cdot g_{n-1}$ $f_n(x_1,\ldots,x_n)=x_n$

- $g_i, f_i \in \mathbb{F}_q[x_1, \dots, x_n]$ for finite $n \in \mathbb{N}$
- The TDS is defined by $\mathscr{F} = \{f_1, \dots, f_n\} \subset \mathbb{F}_q[x_1, \dots, x_n]$

$$\dots, x_n) + h_1(x_2, \dots, x_n)$$
$$\dots, x_n) + h_1(x_3, \dots, x_n)$$

$$h_1(x_n) + h_{n-1}(x_n)$$

Triangular dynamical system

- Shows polynomial degree growth under iteration
- PRNG with \mathcal{F} was investigated using the discrepancy notion
- Polynomial degree growth \implies low discrepancy
- A hash function based on TDS was proposed

Generalised triangular dynamical system

- A generalisation of TDS [joint work with Matthias Steiner, SAC'24]
 - $f_1(x_1, \dots, x_n) = p(x_1) \cdot g_1(x_1)$ $f_2(x_1, \dots, x_n) = p(x_2) \cdot g_1(x_2)$ $f_{n-1}(x_1, \dots, x_n) = p(x_{n-1}) \cdot g_n$ $f_n(x_1,\ldots,x_n) = p(x_n)$
- Aim: define a permutation with ${\mathcal F}$
- The GTDS is defined by $\mathcal{F} \subset \mathbb{F}_q[x_1, \dots, x_n]$

$$(x_2, \dots, x_n) + h_1(x_2, \dots, x_n)$$

 $(x_3, \dots, x_n) + h_1(x_3, \dots, x_n)$

$$h_{n-1}(x_n) + h_{n-1}(x_n)$$

• $p_i \in \mathbb{F}_a[x_i]$ are permutations; $g_i, h_i \in \mathbb{F}_a[x_{i+1}, \dots, x_n]$ are such that g_i have no zeros

Invertibility: polynomial characterisation

- For given $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{F}_a^n$
- Consider f_i for i = n, ..., 1
 - $p_n(x_n) = \beta_n \implies x_n = p_n^{-1}(\beta_n)$
 - $p_{n-1}(x_{n-1})g_{n-1}(x_n) + h_{n-1}(x_n) = \beta_{n-1}$
 - And so on
- Finding $g_i \in \mathbb{F}_q(x_{i+1}, \dots, x_n)$ with no zeros is non-trivial in general
- More general g_i can be build in from g

$$\Rightarrow p_{n-1}(x_{n-1}) = \frac{\beta_{n-1} - h_{n-1}(x_n)}{g_{n-1}(x_n)}$$

• When q is prime a trivial instantiation is: $g(x) = x^2 + a \cdot x + b$ s.t. $b^2 - 4a$ is non-square modulo q

GTDS instantiations (well-known)

- SPN and partial SPN
 - $g_i = 1, h_i = 0, \forall i$
- Generalised Feistel
 - $p_i(x_i) = x_i, g_i = 1$
 - Example
 - Feistel with contracting RF
 - Feistel with expanding RF

•

- Balanced Feistel
 - Can be composition of more than one \mathcal{F} (with same GTDS structure but different instantiations)

Recall GTDS

 $f_1(x_1, \dots, x_n) = p(x_1) \cdot g_1(x_2, \dots, x_n) + h_1(x_2, \dots, x_n)$ $f_2(x_1, \dots, x_n) = p(x_2) \cdot g_1(x_2, \dots, x_n) + h_1(x_2, \dots, x_n)$ $f_{n-1}(x_1, \dots, x_n) = p(x_{n-1}) \cdot g_{n-1}(x_n) + h_{n-1}(x_n)$ $f_n(x_1, \dots, x_n) = p(x_n)$

Other instantiations

• GTDS gives Horst scheme [GHRSWW '22, '23]

•
$$\begin{bmatrix} x_L \\ x_R \end{bmatrix} \mapsto \begin{bmatrix} x_R \\ x_L \cdot g(x_R) + h(x_R) \end{bmatrix}$$
 where g, h

- Independent work from us at the same time
- Horst variations: Griffin and Reinforced Concrete
 - A mapping $\mathbb{F}_p^3 \mapsto \mathbb{F}_p^3$ defined as

 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1^d \\ x_2 \cdot x_1^2 + a_1 \cdot x_1 + b_1 \\ x_2^2 + a_2 \cdot x_2 + b_2 \end{bmatrix}$

$\in \mathbb{F}_{q}[x]$ such that g has no zeros

• p, a_i, b_i, d are integers such that p is prime, gcd(d, p - 1) = 1 and $b_i^2 - 4a_i$ is a non-square modulo p

GTDS: Motivation and consequence

- primitive with polynomials (and linear transformations)
- Motivation
 - Systematically investigate efficient AO primitive constructions
 - Example criteria: Efficient polynomial evaluation (e.g. w.r.t bilinear gates)
 - A polynomial based design approach
- Consequence
 - New constructions beyond Feistel, SPN and Lai-Massey, can be derived using GTDS • A compact way to study a large set of cryptographic permutations and hash function • Cryptanalytic properties in connection with polynomials (more work needed)

Disclaimer: it was neither the intention nor the motivation to define arbitrary SK

Generic cryptanalysis of GTDS

- Let $\delta_F(\mathbf{a}, \mathbf{b}) = |\{\mathbf{x} \in \mathbb{F}_a^n | F(\mathbf{x} + \mathbf{a}) F(\mathbf{x}) = \mathbf{b}\}|$ for $F : \mathbb{F}_a^n \mapsto \mathbb{F}_a^m$, then
- Differential uniformity of *F* is $\delta(F) = \max_{\mathbf{a} \in \mathbb{F}_{q}^{n} \setminus 0, \mathbf{b} \in \mathbb{F}_{q}^{m}} \delta_{F}(\mathbf{a}, \mathbf{b})$

• For GTDS \mathscr{F} with $1 < \delta(p_i) < q$, for $1 \le i \le n$ we have

- $\delta_F(\mathbf{a}, \mathbf{b}) = \prod_{i=1}^n \begin{cases} \deg(p_i), & a_i \neq 0 \\ q, & a_i = 0 \end{cases}$
- Almost the same bound as SPN

• Number of solutions can decrease with g_i , h_i and never increase more than SPN bound

Generic cryptanalysis of GTDS

• For $\mathbb{F}_q^n \mapsto \mathbb{F}_q^n$ and additive characters $\chi, \psi : \mathbb{F}_q^n \mapsto \mathbb{C}$ the correlation of F is

•
$$\operatorname{CORR}_{F}(\chi, \psi) = \frac{1}{q^{n}} \sum_{\mathbf{x} \in \mathbb{F}_{q}^{n}} \overline{\chi(F(\mathbf{x}))} \cdot \psi(\mathbf{x})$$

• For GTDS with $gcd(deg(p_i), q) = 1$ we prove

•
$$\operatorname{CORR}_{\mathscr{F}}(\chi,\psi) \leq \max_{1 \leq i \leq n} \frac{\operatorname{deg}(p_i) - 1}{\sqrt{q}}$$

Gap with SPN bound

•
$$\operatorname{CORR}_{\mathscr{F}}(\chi,\psi) \leq \prod_{i=1}^{n} \begin{cases} \frac{\deg(p_i)-1}{\sqrt{q}}, & \chi \operatorname{non-c} \\ 1, & \text{otherwise} \end{cases}$$

const. on x_i l

New construction from GTDS Arion (keyed) permutation

- Arion GTDS is defined as

$$f_i(x_1, ..., x_n) = x_i^{d_1} \cdot g_i(\sigma_{i+1,n}) + h(\sigma_{i+1,n}) \quad 1 \le i \le n-1$$

$$f_n(x_1, ..., x_n) = x^e$$

• Here $\sigma_{i+1,n} = \sum_{j=i+1}^n f_j(x_1, ..., x_n) + x_j$

- $g_i, h_i \in \mathbb{F}_a[x_{i+1}, \dots, x_n]$ are degree 2 polynomials such that g_i have no zeros
- *q* is prime, $1 < d_1, d_2 < q 1$ be integers such that $gcd(d_i, q 1) = 1$ and $e \cdot d_2 = 1 \pmod{q}$

First design utilising GTDS at round level [joint work with Matthias Steiner and Stefano Trevisani]

Conclusion

- Open problems
 - Utilising GTDS beyond AO primitives, e.g. over small field
 - More generic cryptanalysis of GTDS and tighten cryptanalytic bound
 - Impact of g_i , h_i in differential cryptanalysis bound
 - Non-trivial degree growth bound

THANK YOU! Questions?