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Moving away from boxes of functions

Algebraic (or Arithmetization Oriented) design requires polynomial based approach
Understand and study the polynomial instantiations in a compact way

Impact can be beyond AO constructions

Towards polynomial based construction
 How to define a (suitable) polynomial system?
 How to characterise the polynomials defining such a system?

e How to instantiate?



How do we construct block ciphers?
SPN Network

e Let f: I]:q —> I]:q be permutation polynomial

X1 J(xp)
<. x.z R f ({Cz)
n J(x,)

- LetA,,, € GL,(F,)) i.e. an invertible matrix over [,

o |terate: S ocAo S o-r0§

* Ignoring the key and constant addition (can be combined with linear transformation with slight
modification)
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How do we construct block ciphers?

Fesitel Network

e Letp: [FZ —> [FZ forn > 1 be a polynomial (may or may not be permutation)

» Balanced Feistel e.g. n = 2

o LetF: [F%] — [F%] be such that

Fol 5
| [x2] ARt +P(X2)]

e LetA: [X1 X% = Y1) X6(2)] where 6 € S, and ¢ # 1

o Jterate: S ocAo S o0

* Similarly we can define other Feistel Networks (balanced and unbalanced)
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Why?

« Isn’t it obvious? Any function over [Fq can be represented with a polynomial

 The boxed approach has offered limited algebraic understanding (so far)

* Current approach do not characterise polynomials but study a function w.r.t (known) cryptanalytic
properties e.q. differential and linear properties

* More importantly: Why?
» Efficient polynomial evaluation : Low multiplicative complexity (in AO primitives, SCA resilient design)
* Polynomial with desired cryptanalytic property
* Efficient implementation

 We aim for an algebraically structured way



Polynomial based approach

* Results in Mathematics: polynomial dynamical system

* [terative polynomial system (over finite field)

 Example of studied properties
* Randomness ( using discrepancy notion )
- Period ( with specific polynomial e.g. f(x) = x> + ¢

* Degree growth

* Provides a good starting point



Triangular Dynamical System

e |Introduced by Ostafe and Shparlinski (2010)

filxpy oo x) =X - g1(%, ..., x) + hy(x5, ..., X))
X e X)) =%y - g1(X3, ..., X)) + hy(x3, ..., X))

fn—l(xb “‘9xn) — Xp—1° gn—l(xn) + hn—l(xn)

1., ..0x) =X,

. 8»f; € Fjlxy, ..., x,] for finite n € N

+ The TDS is defined by # = {f,....f,} CF[x},...,x,]
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Triangular dynamical system

 Shows polynomial degree growth under iteration
« PRNG with & was investigated using the discrepancy notion

 Polynomial degree growth — low discrepancy

* A hash function based on TDS was proposed



Generalised triangular dynamical system

* A generalisation of TDS [ joint work with Matthias Steiner, SAC’24 ]
iy, ..x) = pxy) - g%, ... x,) + (X%, ..., X))
H(xp-anx) =pxy) - 2103, ..., x,) + hy(xs, ..., X,)

fn—l(x19 . "xn) — p(xn—l) ' gn—l(xn) T hn—l(xn)
JaX1s -5 X,) = px,)

» Aim: define a permutation with &

¢ D; E [Fq[xi] are permutations; g, h; € [Fq[xl- +1s ---» X,] @re such that g. have no zeros

« The GTDS is defined by # C [Fq[xl, s X, ]
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Invertibility: polynomial characterisation

- Forgiven = (p),....p,) € |,

» Consider f;fori =n,...,1

. px) =B, = x,=p;'(B)

Pt — hy_1(x,)
* pn—l(xn—l)gn—l(xn) T hn—l(xn) — ﬁn—l — pn—l(xn—l) = — - L
gn—l(xn)
* And so on
» Finding g; € [Fq(xH_l, ..., X,) with no zeros is non-trivial in general

- When ¢ is prime a trivial instantiation is: g(x) = x*> + a - x + b s.t. b* — 4a is non-square modulo g

» More general g; can be build in from g
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GTDS instantiations (well-known)

 SPN and partial SPN

e Generalised Feistel

J1(xy,
* pilx) =%, 8= 1
Jo(xy,
 Example
* Feistel with contracting RF
Jn—1(xp, -
» Feistel with expanding RF f (x
n\"]» -

« Balanced Feistel

» Can be composition of more than one & (with same
GTDS structure but different instantiations)
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Recall GTDS

X)) =p(xy) - g%, ..., x,) + hy(x,, ..
X)) = p(xy) - 81Xz, ... x) + Ay(xs, ..

X)) = pX,_1) - 8,1(x,) + Ay, _q(x,)
LX) = p(x,)

5 X,)

LX)



Other instantiations

 GTDS gives Horst scheme [GHRSWW ’22, 23]

L, R here . h € F.[x] such that g h
wnere 2, X1 SUC a asS NO Zeros
° x; - g(xp) + h(xp) J q J

* |Independent work from us at the same time

e Horst variations: Griffin and Reinforced Concrete
« A mapping I]:g > [F; defined as

d
X X1

N1 - | x-xf+a - x; + b,

X
) X5 +ay X, + b,

e p,a. b, d are integers such that p is prime, gcd(d,p — 1) = 1 and bl.2 — 4a; is a non-square modulo p
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GTDS: Motivation and consequence

* Disclaimer : it was neither the intention nor the motivation to define arbitrary SK
primitive with polynomials (and linear transformations)

* Motivation
« Systematically investigate efficient AO primitive constructions
 Example criteria: Efficient polynomial evaluation (e.g. w.r.t bilinear gates)
* A polynomial based design approach

« Consequence
 New constructions beyond Feistel, SPN and Lai-Massey, can be derived using GTDS
A compact way to study a large set of cryptographic permutations and hash function

* Cryptanalytic properties in connection with polynomials ( more work needed )
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Generic cryptanalysis of GTDS

. Letog(a,b) = |{xeF |F(x+a)— F(x)=b}| for F:[F, — I, then

» Differential uniformity of F'is 6(F) = max  ox(a, b)
acl/\0,belF/

« For GTDS & with 1 < o(p;) < g, for 1 <1 < n we have

deg(pi)a ai # O

o(a,b) =1I""_
) F(a ) =1 {Q9 ai —_ O

e Almost the same bound as SPN

 Number of solutions can decrease with g;, . and never increase more than SPN bound
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Generic cryptanalysis of GTDS

n n F i . n : :
- For ) — [, and additive characters y,y : [/ — C the correlation of F is

1
, CORRK(1y) = — D 2 FX) - w(x)

n
Xqu

» For GTDS with gcd(deg(p,), g) = 1 we prove

deg(p.) — 1
CORR«(y, ) < max &Py

1<i<n \/a

Gap with SPN bound

deg(p;) — 1

CORR#(y, ) < H Y

i=1 | 1, otherwise

J hon-const. on X;
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New construction from GTDS

Arion (keyed) permutation

* First design utilising GTDS at round level [ joint work with Matthias Steiner and Stefano Trevisani ]

e Arion GTDS is defined as

fiGxps s X)) = X1 80141 ) +h(01yy ) 1<i<n—1

f.(xq, .. x,) = x°

» gisprime, | <d;,d, < g — 1 beintegers such that gcd(d;,q— 1) =lande-d, =1 (mod g)
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Conclusion

 Open problems
o Utilising GTDS beyond AO primitives, e.g. over small field
* More generic cryptanalysis of GTDS and tighten cryptanalytic bound

» Impact of g;, h; in differential cryptanalysis bound

* Non-trivial degree growth bound
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THANK YOU!

Questions?



