Cryptology: Problem Sheet 6

Topic: Block Cipher: Design and Cryptanalysis

1. Consider a 64 -bit block cipher Light-AES composed of 12 rounds each having 4 operations:

Sub-Cell: Uses a 4-bit S-Box GS and apply it to each cells. The S-Box operation is given in Fig.1, and the difference distribution table corresponding to the S-Box is given in Fig.3.

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$G S(x)$	1	a	4	c	6	f	3	9	2	d	b	7	5	0	8	e

Figure 1: S-Box for Light-AES
\square Shuffle-Cells: Shuffle the cells of the state as follows:

$$
\left(\begin{array}{cccc}
s_{0} & s_{4} & s_{8} & s_{12} \\
s_{1} & s_{5} & s_{9} & s_{13} \\
s_{2} & s_{6} & s_{10} & s_{14} \\
s_{3} & s_{7} & s_{11} & s_{15}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
s_{0} & s_{14} & s_{9} & s_{7} \\
s_{10} & s_{4} & s_{3} & s_{13} \\
s_{5} & s_{11} & s_{12} & s_{2} \\
s_{15} & s_{1} & s_{6} & s_{8}
\end{array}\right)
$$

\square Mix-Columns: Multiply each column by the following matrix:

$$
M=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

\square Add-Round-Key: XORs the round key with the state.
The 64 -bit message is divided into 16 cells of 4 -bit, and loaded in the initial state. The key whitening is done in the beginning. Answer the following:
(a) Show that Light-AES achieves full diffusion in 3 rounds.
(b) Prove or Refute: The order of Sub-Cell and Shuffle-Cells is invariant in LightAES.
(c) Show that if there exists exactly two positions with a non-zero differences in a column, then the two positions will contain a non-zero difference even after the mix column operation.
(d) What is the branch number of matrix M ? Show that the matrix M is involutory (i.e., $M=M^{-1}$). State the main advantages and disadvantages of using this matrix as compared to the one used in AES.

Figure 2: 5 round Impossible Differential of Light-AES.
(e) Using the above property, prove that 5-round Light-AES has the following impossible differential depicted in Fig.2.
(f) Assume that any $r(r \geq 2)$ round differential characteristic of Light-AES has a minimum of $4 r$ active S-Boxes. Find an estimate on the minimum number of rounds Light-AES should use to resist against differential cryptanalysis?
(g) Mount an Integral attack (distinguishing) on 3-round Light-AES. Compute the data, time and memory complexity of your attack.

Figure 3: DDT for Light-AES
2. Consider a modified AES block cipher, dubbed mAES, which is identical to AES but uses the following matrix in the Mix-Column operation:

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) .
$$

All the operations, S-Box description remain same as AES.
(a) Show that two round mAES does not achieve full diffusion. Use this fact to mount a differential attack (distinguishing) on two round mAES.
(b) Assume that the number of active S-Box in the linear as well as differential trail of mAES is given in the table below. As a designer how many rounds of mAES will you choose so that the cipher provides security against (i) differential cryptanalysis, (ii) linear cryptanalysis?

\#Round	1	2	3	4	5	6	7	8
\# Active S-Boxes	1	4	7	16	17	20	23	32

(c) Suppose the $i^{\text {th }}$ round state (before Sub-byte) of mAES follows the following integral property:

$$
\left(\begin{array}{llll}
C & C & C & C \\
A & C & C & C \\
A & A & C & C \\
A & A & A & C
\end{array}\right)
$$

What would be the integral property at the beginning of round $(i+1)$?
3. Consider a 4 round Feistel cipher (on 128-bits) depicted in the figure below. Show that $(\Delta, 0) \rightarrow(\Delta, \star)$ is an impossible differential for the cipher. How can you use this impossible differential to mount a distinguishing attack on 4 round Feistel? Note that \mathcal{F} is a keyed permutation on 64 -bits.

[Hint: If there is a non-zero input difference (say Δ_{1}) in the input of \mathcal{F}, then the output difference (say Δ_{2}) is also non-zero.]

