Cryptology: Problem Sheet 6

Topic: Block Cipher: Design and Cryptanalysis

1. Consider a 64-bit block cipher Light-AES composed of 12 rounds each having 4 operations:

 \Box Sub-Cell: Uses a 4-bit S-Box GS and apply it to each cells. The S-Box operation is given in Fig.1, and the difference distribution table corresponding to the S-Box is given in Fig.3.

x	0	1	2	3	4	5	6	7	8	9	a	Ъ	с	d	е	f
GS(x)	1	a	4	с	6	f	3	9	2	d	b	7	5	0	8	е

Figure 1: S-Box for Light-AES

 \square Shuffle-Cells: Shuffle the cells of the state as follows:

$(s_0 \ s_4 \ s_8 \ s_{12})$		$\left(\begin{array}{c} s_0 \ s_{14} \ s_9 \ s_7 \end{array} \right)$
$s_1 \; s_5 \; s_9 \; s_{13}$	\rightarrow	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$s_2 \ s_6 \ s_{10} \ s_{14}$		
$(s_3 \ s_7 \ s_{11} \ s_{15})$		$(s_{15} \ s_1 \ s_6 \ s_8)$

□ Mix-Columns: Multiply each column by the following matrix:

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

 \square Add-Round-Key: XORs the round key with the state.

The 64-bit message is divided into 16 cells of 4-bit, and loaded in the initial state. The key whitening is done in the beginning. Answer the following:

- (a) Show that Light-AES achieves full diffusion in 3 rounds.
- (b) Prove or Refute: The order of Sub-Cell and Shuffle-Cells is invariant in Light-AES.
- (c) Show that if there exists exactly two positions with a non-zero differences in a column, then the two positions will contain a non-zero difference even after the mix column operation.
- (d) What is the branch number of matrix M? Show that the matrix M is involutory (i.e., $M = M^{-1}$). State the main advantages and disadvantages of using this matrix as compared to the one used in AES.

Figure 2: 5 round Impossible Differential of Light-AES.

- (e) Using the above property, prove that 5-round Light-AES has the following impossible differential depicted in Fig.2.
- (f) Assume that any $r \ (r \ge 2)$ round differential characteristic of Light-AES has a minimum of 4r active S-Boxes. Find an estimate on the minimum number of rounds Light-AES should use to resist against differential cryptanalysis?
- (g) Mount an Integral attack (distinguishing) on 3-round Light-AES. Compute the data, time and memory complexity of your attack.

									Δ	0							
		0	1	2	3	4	5	6	7	8	9	a	ъ	с	d	е	f
	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	2	2	0	2	2	2	2	2	0	0	2
	2	0	0	0	0	0	4	4	0	0	2	2	0	0	2	2	0
	3	0	0	0	0	0	2	2	0	2	0	0	2	2	2	2	2
	4	0	0	0	2	0	4	0	6	0	2	0	0	0	2	0	0
	5	0	0	2	0	0	2	0	0	2	0	0	0	2	2	2	4
	6	0	0	4	6	0	0	0	2	0	0	2	0	0	0	2	0
Δ_I	7	0	0	2	0	0	2	0	0	2	2	2	4	2	0	0	0
	8	0	0	0	4	0	0	0	4	0	0	0	4	0	0	0	4
	9	0	2	0	2	0	0	2	2	2	0	2	0	2	2	0	0
	a	0	4	0	0	0	0	4	0	0	2	2	0	0	2	2	0
	b	0	2	0	2	0	0	2	2	2	2	0	0	2	0	2	0
	с	0	0	4	0	4	0	0	0	2	0	2	0	2	0	2	0
	d	0	2	2	0	4	0	0	0	0	0	2	2	0	2	0	2
	е	0	4	0	0	4	0	0	0	2	2	0	0	2	2	0	0
	f	0	2	2	0	4	0	0	0	0	2	0	2	0	0	2	2

2. Consider a modified AES block cipher, dubbed mAES, which is identical to AES but uses the following matrix in the Mix-Column operation:

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

All the operations, S-Box description remain same as AES.

- (a) Show that two round mAES does not achieve full diffusion. Use this fact to mount a differential attack (distinguishing) on two round mAES.
- (b) Assume that the number of active S-Box in the linear as well as differential trail of mAES is given in the table below. As a designer how many rounds of mAES will you choose so that the cipher provides security against (i) differential cryptanalysis, (ii) linear cryptanalysis?

#Round	1	2	3	4	5	6	7	8
# Active S-Boxes	1	4	7	16	17	20	23	32

(c) Suppose the i^{th} round state (before Sub-byte) of mAES follows the following integral property:

$\int C$	C	C	C	
A	C	C	C	
A	A	C	C	
$\setminus A$	A	A	C	

What would be the integral property at the beginning of round (i + 1)?

3. Consider a 4 round Feistel cipher (on 128-bits) depicted in the figure below. Show that $(\Delta, 0) \rightarrow (\Delta, \star)$ is an impossible differential for the cipher. How can you use this impossible differential to mount a distinguishing attack on 4 round Feistel? Note that \mathcal{F} is a keyed permutation on 64-bits.

[Hint: If there is a non-zero input difference (say Δ_1) in the input of \mathcal{F} , then the output difference (say Δ_2) is also non-zero.]