Cryptology: Problem Sheet 3

Topic: Modes of Operation and Message Authentication Code

- 1. Consider a CBC-mode encryption is used with a 128-bit PRF having a 256-bit key to encrypt a 1024-bit message. What would be the length of the resulting ciphertext?
- 2. Let F be a pseudorandom function mapping 128-bits to 128-bits. Consider the mode of operation in which a uniform value $r \leftarrow_{\$} \{0,1\}^{64}$ is chosen, and the *i*-th ciphertext block c_i is computed as

$$c_i := F_k(r \| i) \oplus m_i.$$

What is the maximum message length that can be encrypted using this scheme? Does this scheme have indistinguishable encryptions in the presence of an eavesdropper.

- 3. Let F be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticate fixed-length messages. (In each case Gen outputs a uniform $k \in \{0, 1\}^n$. Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.)
 - (a) To authenticate a message $M = M_1 || M_2 || \cdots || M_\ell$, where $M_i \in \{0, 1\}^n$, compute the tag $t := F_k(M_1) \oplus \cdots \oplus F_K(M_\ell)$.
 - (b) To authenticate a message $M = M_1 ||M_2|| \cdots ||M_\ell$, where $M_i \in \{0, 1\}^{n/2}$, compute the tag $t := F_K(\langle 1 \rangle ||M_1) \oplus \cdots \oplus F_K(\langle \ell \rangle ||M_\ell)$.
 - (c) To authenticate a message $M = M_1 || M_2 || \cdots || M_\ell$, where $M_i \in \{0, 1\}^n$, choose uniform $r \leftarrow \{0, 1\}^n$ and compute $t := F_K(r) \oplus F_K(M_1) \oplus \cdots \oplus F_K(M_\ell)$, and let the tag be (r, t).
- 4. Consider the message authentication code where the tag generation function TG : $\{0,1\}^k \times \{0,1\}^{2(n-1)} \to \{0,1\}^n$ is given by

$$\mathsf{TG}_{K}(x_{1}, x_{2}) = F_{K}(0||x_{1}) \oplus F_{K}(1||x_{2}),$$

where F is a PRF. Mount an existential forgery attack on it. Can you extend this attack to mount an universal forgery attack against the function?

5. Suppose you are given two MAC systems $MAC_1 = (KG_1, TG_1, Vrfy_1)$ and $MAC_2 = (KG_2, TG_2, Vrfy_2)$. Define MAC = (KG, TG, Vrfy), where $KG(1^n) = (KG_1(1^n), KG_2(1^n))$,

$$\mathsf{TG}((K_1, K_2), m) = \mathsf{TG}_1(K_1, m) || \mathsf{TG}_2(K_2, m).$$

Vrfy is defined in the obvious way: on input $((k_1, k_2), m, (t_1, t_2))$, V accepts iff both $V_1(k_1, m, t_1)$ and $V_2(k_2, m, t_2)$ accept. Show that MAC is secure if either MAC₁ or MAC₂ is secure.