Cryptology: Problem Sheet 1

Topic: Classical Ciphers and Perfect Secrecy

- 1. If an encryption function Enc_K is identical to the decryption function Dec_K , then the key K is said to be involutary. Suppose K = (a, b) be a key in an Affine cipher over \mathbb{Z}_n . Prove that K is an involutary key if and only if $a^{-1} \mod n = a$ and $b(a+1) \equiv 0 \mod n$.
- 2. Prove or Refute: An encryption scheme with message space \mathcal{M} is perfectly secret if and only if for every probability distribution over \mathcal{M} and every $c_0, c_1 \in \mathcal{C}$, we have

$$\Pr[C = c_0] = \Pr[C = c_1].$$

3. Consider an encryption scheme with the message space

 $\mathcal{M} = \{ m \in \{0,1\}^n | \text{ the last bit of m is } 0 \}.$

Gen chooses a uniform key from $\{0,1\}^{n-1}$. $\mathsf{Enc}_k(m)$ returns ciphertext $m \oplus (k||0)$, and $\mathsf{Dec}_k(c)$ returns $c \oplus (k||0)$. State and explain whether the above scheme is perfectly secret.

- 4. For the following encryption scheme, justify whether the scheme is perfectly secret or not. Assume that the message (and ciphertext) space is $\mathcal{M} = \mathcal{C} = \{0, \dots, 4\}$.
 - Gen returns a key K chosen uniformly at random from the key space $\mathcal{K} = \{0, \ldots, 5\}$.
 - $\operatorname{Enc}_{K}(M)$ returns $[K + M \mod 5]$.
 - $\mathsf{Dec}_K(C)$ returns $[C K \mod 5]$.
- 5. Let Π be an arbitrary scheme with $|\mathcal{K}| < |\mathcal{M}|$. Constuct an adversary \mathcal{A} such that $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{eav} = 1] > \frac{1}{2}$.
- 6. Prove that, by redefining the key space, we may assume that Enc is deterministic without changing $\Pr[C = c | M = m]$ for any m, c.
- 7. Let Π denote the Vigenère cipher where the message space consists of all 3-character strings (over the English alphabet), and the key is generated by first choosing the period t uniformly from $\{1, 2, 3\}$ and then letting the key be a uniform string of length t. Define \mathcal{A} as follows: \mathcal{A} outputs $m_0 = aab$ and $m_1 = abb$. When given a ciphertext c, it outputs 0 if the first character of c is the same as the second character of c, and outputs 1 otherwise. Compute $\Pr[\PrivK_{\mathcal{A},\Pi}^{eav} = 1]$ and conclude whether Vigenere cipher is perfectly secure or not.