Half-Yearly Presentation

Lawande Shital Sanjay

IAI TCG CREST and RKMVERI

August 26, 2022

Courses completed semester-wise and marks obtained

Semester-1:

- 1. Algebra and its Applications-70
- 2.Introduction to Stochastic Process-77
- 3. Discrete Mathematics-55
- 4. Cryptology and Security-52

Courses completed semester-wise and marks obtained

Semester-1:

- 1. Algebra and its Applications-70
- 2.Introduction to Stochastic Process-77
- 3. Discrete Mathematics-55
- 4. Cryptology and Security-52

Semester-2:

- 1. Trends in Combinatorial Topology-64
- Introduction to Statistics and Probability-57
- 3. Knot Theory-74
- 4. Research Methodology-76

My Co-Guide and Area of Work

- Guide Prof. Sukumar Das Adhikari
- Co guide Kuldeep Saha.

My Co-Guide and Area of Work

- Guide Prof. Sukumar Das Adhikari
- Co guide Kuldeep Saha.
- Area of Work Topology.

Papers and books read

- Algebraic Topology by Allen Hatcher.
- Knots and Links by Dale Rolfsen.
- A Primer on Mapping Class Groups by Benson Farb and Dan Margalit.
- A research paper on Computing Persistent Homology by Afra Zomorodian and Gunnar Carlsson

• Definition of Mapping class group.

- Definition of Mapping class group.
- Mapping class group of closed disk D^2 .

- Definition of Mapping class group.
- Mapping class group of closed disk D^2 .
- Mapping class group of the Sphere S^2 .

- Definition of Mapping class group.
- Mapping class group of closed disk D^2 .
- Mapping class group of the Sphere S^2 .
- Mapping class group of the Annulus A.

- Definition of Mapping class group.
- Mapping class group of closed disk D^2 .
- Mapping class group of the Sphere S^2 .
- Mapping class group of the Annulus A.
- Mapping class group of the Torus T^2 .

Definition of Mapping class group

Definition of Mapping class group

$Homeo^+(S, \partial S)$: S- Surface (2-dimensional manifold)

Group of orientation preserving homeomorphisms of S that restrict to identity on ∂S .

Definition of Mapping class group

$Homeo^+(S, \partial S)$: S- Surface (2-dimensional manifold)

Group of orientation preserving homeomorphisms of S that restrict to identity on ∂S .

Mapping class group: Mod(S)

Group of isotopy classes of elements of $Homeo^+(S, \partial S)$, where isotopies are required to fix boundary pointwise.

i.e Group of orientation preserving homeomorphisms of S modulo isotopy.

Notations: Mod(S), MCG(S), Map(S), etc.

Mapping class group of closed disk D^2 : (Alexander Lemma)

 $Mod(D^2) \cong \{1\}$

Mapping class group of closed disk D^2 : (Alexander Lemma)

$$Mod(D^2) \cong \{1\}$$

Proof:

• Let $\Phi: D^2 \to D^2$ be an element of $Mod(D^2)$.

Mapping class group of closed disk D^2 : (Alexander Lemma)

$$Mod(D^2) \cong \{1\}$$

Proof:

• Let $\Phi: D^2 \to D^2$ be an element of $Mod(D^2)$.

Figure: 1.Pictorial representation of the isotopy

Mapping Class Group of disk Contd.

• Define $F: D^2 \times [0,1] \rightarrow D^2$ as,

$$F(x,t) = \begin{cases} (1-t)\phi(\frac{x}{1-t}), & 0 \le |x| < 1-t \\ x, & 1-t \le |x| < 1. \end{cases}$$

and $F(x,1) = x, \forall x$. This gives an isotopy F from ϕ to identity.

Mapping class group of Sphere S^2 :

Theorem: $Mod(S^2) \cong \{1\}.$

Mapping class group of Sphere S^2 :

Theorem: $Mod(S^2) \cong \{1\}.$

- Let $f \in Mod(S^2)$ and ϕ be representative of f.
- Let α be an oriented simple closed curve on S^2 .

Mapping class group of Sphere S^2 :

Theorem: $Mod(S^2) \cong \{1\}.$

- Let $f \in Mod(S^2)$ and ϕ be representative of f.
- Let α be an oriented simple closed curve on S^2 .
- Since S^2 is simply connected, $\phi(\alpha)$ is isotopic to α , so upto isotopy, ϕ fixes α pointwise.

Mapping class group of Sphere S^2 :

Theorem: $Mod(S^2) \cong \{1\}.$

- Let $f \in Mod(S^2)$ and ϕ be representative of f.
- Let α be an oriented simple closed curve on S^2 .
- Since S^2 is simply connected, $\phi(\alpha)$ is isotopic to α , so upto isotopy, ϕ fixes α pointwise.
- Let $(D_1, \partial D_1 = \alpha)$ and $(D_2, \partial D_2 = \alpha)$ be two disks obtained by cutting S^2 along α .

Mapping class group of Sphere S^2 :

Theorem: $Mod(S^2) \cong \{1\}.$

- Let $f \in Mod(S^2)$ and ϕ be representative of f.
- Let α be an oriented simple closed curve on S^2 .
- Since S^2 is simply connected, $\phi(\alpha)$ is isotopic to α , so upto isotopy, ϕ fixes α pointwise.
- Let $(D_1, \partial D_1 = \alpha)$ and $(D_2, \partial D_2 = \alpha)$ be two disks obtained by cutting S^2 along α .
- ϕ induces homeomorphisms $\overline{\phi}_1: D_1 \to D_1$ and $\overline{\phi}_2: D_2 \to D_2$ fixing α , i.e, boundary of D_1 and D_2 pointwise, $\overline{\phi}_1, \overline{\phi}_2 \in Mod(D^2)$.
- ullet $\overline{\phi}_1,\overline{\phi}_2$ are isotopic to identity of D_1 and D_2 respectively.

Mapping class group of Sphere S^2 :

Theorem: $Mod(S^2) \cong \{1\}.$

- Let $f \in Mod(S^2)$ and ϕ be representative of f.
- Let α be an oriented simple closed curve on S^2 .
- Since S^2 is simply connected, $\phi(\alpha)$ is isotopic to α , so upto isotopy, ϕ fixes α pointwise.
- Let $(D_1, \partial D_1 = \alpha)$ and $(D_2, \partial D_2 = \alpha)$ be two disks obtained by cutting S^2 along α .
- ϕ induces homeomorphisms $\overline{\phi}_1: D_1 \to D_1$ and $\overline{\phi}_2: D_2 \to D_2$ fixing α , i.e, boundary of D_1 and D_2 pointwise, $\overline{\phi}_1, \overline{\phi}_2 \in Mod(D^2)$.
- ullet $\overline{\phi}_1,\overline{\phi}_2$ are isotopic to identity of D_1 and D_2 respectively.
- ϕ is isotopic to identity of S^2 .

Mapping Class Group Of Annulus A:

 $Mod(A) \cong \mathbb{Z}.$

Mapping Class Group Of Annulus A:

 $Mod(A) \cong \mathbb{Z}$.

Proof:

• Let ϕ be any homeomorphism of A representing $f \in Mod(A)$.

Mapping Class Group Of Annulus A:

 $Mod(A) \cong \mathbb{Z}$.

- Let ϕ be any homeomorphism of A representing $f \in Mod(A)$.
- The universal cover of A, $\widetilde{A} \approx \mathbb{R} \times [0,1]$.

Mapping Class Group Of Annulus A:

 $Mod(A) \cong \mathbb{Z}$.

- Let ϕ be any homeomorphism of A representing $f \in Mod(A)$.
- The universal cover of A, $\widetilde{A} \approx \mathbb{R} \times [0,1]$.
- $\widetilde{\phi}:\widetilde{A}\to\widetilde{A}$, the preferred lift of ϕ fixing the origin such that following diagram commutes:

Mapping Class Group Of Annulus A:

 $Mod(A) \cong \mathbb{Z}$.

- Let ϕ be any homeomorphism of A representing $f \in Mod(A)$.
- The universal cover of A, $\widetilde{A} \approx \mathbb{R} \times [0,1]$.
- $\widetilde{\phi}:\widetilde{A}\to\widetilde{A}$, the preferred lift of ϕ fixing the origin such that following diagram commutes:

• $\widetilde{\phi}_1 := \widetilde{\phi}|_{\mathbb{R} \times \{1\}} : \mathbb{R} \to \mathbb{R}$. Since $\widetilde{\phi}_1$ is lift of identity map on $S^1 \times 1$, $\widetilde{\phi}_1(x) = x + n$.

- $\widetilde{\phi}_1:=\widetilde{\phi}|_{\mathbb{R}\times\{1\}}:\mathbb{R}\to\mathbb{R}$. Since $\widetilde{\phi}_1$ is lift of identity map on $S^1\times 1$, $\widetilde{\phi}_1(x)=x+n$.
- Construction of a map $\rho: Mod(A) \to \mathbb{Z}$.

- $\widetilde{\phi}_1 := \widetilde{\phi}|_{\mathbb{R} \times \{1\}} : \mathbb{R} \to \mathbb{R}$. Since $\widetilde{\phi}_1$ is lift of identity map on $S^1 \times 1$, $\widetilde{\phi}_1(x) = x + n$.
- Construction of a map $\rho: Mod(A) \to \mathbb{Z}$.
- ullet Let δ be an oriented simple proper arc as shown in fig.

Figure: 2

• The concatenation $\phi(\delta) * \delta^{-1}$ is a loop based at $\delta(0)$, and we define $\rho(f) = [\phi(\delta) * \delta^{-1}] = \phi(\delta) * \delta^{-1}(1) \in \pi(A, \delta(0)) \cong \mathbb{Z}$.

- The concatenation $\phi(\delta) * \delta^{-1}$ is a loop based at $\delta(0)$, and we define $\rho(f) = [\phi(\delta) * \delta^{-1}] = \phi(\delta) * \delta^{-1}(1) \in \pi(A, \delta(0)) \cong \mathbb{Z}$.
- Let $\widetilde{\delta}$ be the unique lift of δ starting from origin then $\widetilde{\phi}(\widetilde{\delta})$ is lift of $\phi(\delta)$ with $\widetilde{\phi}(\widetilde{\delta})(0) = (0,0) = \widetilde{\phi(\delta)}(0)$.

- The concatenation $\phi(\delta) * \delta^{-1}$ is a loop based at $\delta(0)$, and we define $\rho(f) = [\phi(\delta) * \delta^{-1}] = \phi(\delta) * \delta^{-1}(1) \in \pi(A, \delta(0)) \cong \mathbb{Z}$.
- Let $\widetilde{\delta}$ be the unique lift of δ starting from origin then $\widetilde{\phi}(\widetilde{\delta})$ is lift of $\phi(\delta)$ with $\widetilde{\phi}(\widetilde{\delta})(0) = (0,0) = \widetilde{\phi(\delta)}(0)$.

Figure: 3. Lift of loop in A

- From fig. above we can write $\rho(f) = [\phi(\delta) * \delta^{-1}] = \widetilde{\phi(\delta)}(1)$.
- By unique lifting property, $\tilde{\phi}(\tilde{\delta})(1) = \phi(\tilde{\delta})(1)$, so $\rho(f) = \tilde{\phi}(\tilde{\delta})(1)$

- From fig. above we can write $\rho(f) = [\phi(\delta) * \delta^{-1}] = \widetilde{\phi(\delta)}(1)$.
- ullet By unique lifting property, $\widetilde{\phi}(\widetilde{\delta})(1) = \widetilde{\phi(\delta)}(1),$ so $ho(f) = \widetilde{\phi}(\widetilde{\delta})(1)$
- ullet To prove that ho is homomorphism:

- From fig. above we can write $\rho(f) = [\phi(\delta) * \delta^{-1}] = \widetilde{\phi(\delta)}(1)$.
- By unique lifting property, $\widetilde{\phi}(\widetilde{\delta})(1) = \widetilde{\phi(\delta)}(1)$, so $\rho(f) = \widetilde{\phi}(\widetilde{\delta})(1)$
- ullet To prove that ho is homomorphism:
- Let $f, g \in Mod(A)$ and ϕ, ψ be the representatives of f, g and $\tilde{\phi}, \tilde{\psi}$ be preferred lifts of ϕ , ψ respectively.

• Since $P \circ (\widetilde{\psi} \circ \widetilde{\phi})(\widetilde{\delta}) = \psi \circ \phi(\delta)$, $\widetilde{\psi} \circ \widetilde{\phi}(\widetilde{\delta})$ is lift of $\psi \circ \phi(\delta)$ and by unique lifting property, $\widetilde{\psi} \circ \widetilde{\phi}(\widetilde{\delta})(1) = \widetilde{\psi} \circ \phi(\delta)(1) = \widetilde{\psi} \circ \phi(\widetilde{\delta})(1)$

- Since $P \circ (\widetilde{\psi} \circ \widetilde{\phi})(\widetilde{\delta}) = \psi \circ \phi(\delta)$, $\widetilde{\psi} \circ \widetilde{\phi}(\widetilde{\delta})$ is lift of $\psi \circ \phi(\delta)$ and by unique lifting property, $\widetilde{\psi} \circ \widetilde{\phi}(\widetilde{\delta})(1) = \widetilde{\psi} \circ \phi(\delta)(1) = \widetilde{\psi} \circ \phi(\widetilde{\delta})(1)$
- $\widetilde{\phi}_1$ and $\widetilde{\psi}_1$ are integer translations say by m and n respectively, $\widetilde{\psi}_1 \circ \widetilde{\phi}_1$ is integer translation by m+n.

- Since $P \circ (\widetilde{\psi} \circ \widetilde{\phi})(\widetilde{\delta}) = \psi \circ \phi(\delta)$, $\widetilde{\psi} \circ \widetilde{\phi}(\widetilde{\delta})$ is lift of $\psi \circ \phi(\delta)$ and by unique lifting property, $\widetilde{\psi} \circ \widetilde{\phi}(\widetilde{\delta})(1) = \widetilde{\psi} \circ \phi(\delta)(1) = \widetilde{\psi} \circ \phi(\widetilde{\delta})(1)$
- $\widetilde{\phi}_1$ and $\widetilde{\psi}_1$ are integer translations say by m and n respectively, $\widetilde{\psi}_1 \circ \widetilde{\phi}_1$ is integer translation by m+n.

Figure: 4.Lifts of loops in A

• This gives, $\widetilde{\psi \circ \phi(\delta)}(1) = \widetilde{\phi(\delta)}(1) + \widetilde{\psi(\delta)}(1)$, so ρ is homomorphism.

ullet To show that ho is injective:

- To show that ρ is injective:
- Let $f \in Mod(A)$ be such that $\rho(f) = 0$ and ϕ be a homeomorphism of A representing f then $\phi(\delta) * \delta^{-1}(1) = (0,0)$ which gives $\widetilde{\phi(\delta)}(1) = (0,1)$ and $\widetilde{\delta}(1) = (0,1)$.

- To show that ρ is injective:
- Let $f \in Mod(A)$ be such that $\rho(f) = 0$ and ϕ be a homeomorphism of A representing f then $\phi(\delta) * \delta^{-1}(1) = (0,0)$ which gives $\widetilde{\phi(\delta)}(1) = (0,1)$ and $\widetilde{\delta}(1) = (0,1)$.
- There exist homotopy, straight line homotopy \widetilde{H}_t taking $\phi(\delta)$ to $\widetilde{\delta}$ which descends to the homotopy H_t between $\phi(\delta)$ and δ .

- To show that ρ is injective:
- Let $f \in Mod(A)$ be such that $\rho(f) = 0$ and ϕ be a homeomorphism of A representing f then $\phi(\delta) * \delta^{-1}(1) = (0,0)$ which gives $\widetilde{\phi(\delta)}(1) = (0,1)$ and $\widetilde{\delta}(1) = (0,1)$.
- There exist homotopy, straight line homotopy $\widetilde{H_t}$ taking $\widetilde{\phi(\delta)}$ to $\widetilde{\delta}$ which descends to the homotopy H_t between $\phi(\delta)$ and δ .
- ullet Upto isotopy, ϕ fixes δ pointwise.
- Let $(D, \partial D = \delta \cup \partial A)$ be the disk obtained from A by cutting along δ .

- To show that ρ is injective:
- Let $f \in Mod(A)$ be such that $\rho(f) = 0$ and ϕ be a homeomorphism of A representing f then $\phi(\delta) * \delta^{-1}(1) = (0,0)$ which gives $\widetilde{\phi(\delta)}(1) = (0,1)$ and $\widetilde{\delta}(1) = (0,1)$.
- There exist homotopy, straight line homotopy $\widetilde{H_t}$ taking $\widetilde{\phi(\delta)}$ to $\widetilde{\delta}$ which descends to the homotopy H_t between $\phi(\delta)$ and δ .
- Upto isotopy, ϕ fixes δ pointwise.
- Let $(D, \partial D = \delta \cup \partial A)$ be the disk obtained from A by cutting along δ .
- ullet ϕ induces a homeomorphism $\overline{\phi}$ of D which represents an element f of $Mod(D)\simeq 1.$
- ullet $\overline{\phi}$ is isotopic to identity map of D and hence ϕ is isotopic to identity.

ullet To show that ho is surjective:

- ullet To show that ho is surjective:
- For any $n \in \mathbb{Z}$, linear transformation of \mathbb{R}^2 given by $M = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ preserves $\mathbb{R} \times [0, 1]$.

- To show that ρ is surjective:
- For any $n \in \mathbb{Z}$, linear transformation of \mathbb{R}^2 given by $M = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ preserves $\mathbb{R} \times [0, 1]$.
- M defines a covering homeomorphism $\widetilde{\phi}:\widetilde{A}\to\widetilde{A}$ such that $\widetilde{\phi}|_{\mathbb{R}\times\{1\}}$ is integer translation by n.

- To show that ρ is surjective:
- For any $n \in \mathbb{Z}$, linear transformation of \mathbb{R}^2 given by $M = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ preserves $\mathbb{R} \times [0, 1]$.
- M defines a covering homeomorphism $\widetilde{\phi}:\widetilde{A}\to\widetilde{A}$ such that $\widetilde{\phi}|_{\mathbb{R} imes\{1\}}$ is integer translation by n.
- So $\widetilde{\phi(\delta)}(1)=(n,1)$ and $[\phi(\delta)*\delta^{-1}]=n$ i.e $\rho(f)=n$

Mapping class group of Torus T^2

 $Mod(T^2) \cong SL(2,\mathbb{Z})$

Mapping class group of Torus T^2

 $Mod(T^2) \cong SL(2,\mathbb{Z})$

Proof:

• Let $f \in Mod(T^2)$ and $\phi: T^2 \to T^2$ be a homeomorphism representing f then ϕ induces a map $\phi_*: H_1(T^2, \mathbb{Z}) \to H_1(T^2, \mathbb{Z})$

Mapping class group of Torus T^2

 $Mod(T^2) \cong SL(2,\mathbb{Z})$

Proof:

- Let $f \in Mod(T^2)$ and $\phi: T^2 \to T^2$ be a homeomorphism representing f then ϕ induces a map $\phi_*: H_1(T^2, \mathbb{Z}) \to H_1(T^2, \mathbb{Z})$
- ϕ is invertible, so ϕ_* is an automorphism of $H_1(T^2,\mathbb{Z}) \cong \mathbb{Z}^2$.

Mapping class group of Torus T^2

 $Mod(T^2) \cong SL(2,\mathbb{Z})$

Proof:

- Let $f \in Mod(T^2)$ and $\phi: T^2 \to T^2$ be a homeomorphism representing f then ϕ induces a map $\phi_*: H_1(T^2, \mathbb{Z}) \to H_1(T^2, \mathbb{Z})$
- ϕ is invertible, so ϕ_* is an automorphism of $H_1(T^2,\mathbb{Z}) \cong \mathbb{Z}^2$.
- $\phi \to \phi_*$ gives a homomorphism $Mod(T^2) \to Aut(\mathbb{Z}^2) \cong GL(2,\mathbb{Z})$

Mapping class group of Torus T^2

 $Mod(T^2) \cong SL(2,\mathbb{Z})$

Proof:

- Let $f \in Mod(T^2)$ and $\phi: T^2 \to T^2$ be a homeomorphism representing f then ϕ induces a map $\phi_*: H_1(T^2, \mathbb{Z}) \to H_1(T^2, \mathbb{Z})$
- ϕ is invertible, so ϕ_* is an automorphism of $H_1(T^2,\mathbb{Z}) \cong \mathbb{Z}^2$.
- $\phi \to \phi_*$ gives a homomorphism $Mod(T^2) \to Aut(\mathbb{Z}^2) \cong GL(2,\mathbb{Z})$
- Let M and L be two oriented curves on T^2 with homology clases a and b as shown in fig. then algebraic intersection number, $\hat{i}(a, b) = 1$.

- Since $H_1(T^2, \mathbb{Z}) = \langle a, b \rangle$, so $\phi_*(a) = c_1 a + c_2 b$ and $\phi_*(b) = d_1 a + d_2 b$ for $c_1, c_2, d_1, d_2 \in \mathbb{Z}$.
- Orientation-preserving homeomorphisms preserves algebraic intersection number, hence $\hat{i}(a,b) = \hat{i}(\phi_*(a),\phi_*(b)) = c_1d_2 c_2d_1$.

- Since $H_1(T^2, \mathbb{Z}) = \langle a, b \rangle$, so $\phi_*(a) = c_1 a + c_2 b$ and $\phi_*(b) = d_1 a + d_2 b$ for $c_1, c_2, d_1, d_2 \in \mathbb{Z}$.
- Orientation-preserving homeomorphisms preserves algebraic intersection number, hence $\hat{i}(a,b) = \hat{i}(\phi_*(a),\phi_*(b)) = c_1d_2 c_2d_1$.

$$[\phi_*] = \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \hat{i}(\phi_*(a), b) & \hat{i}(\phi_*(b), b) \\ \hat{i}(-\phi_*(a), a) & \hat{i}(-\phi_*(b), a) \end{bmatrix} \in SL(2, \mathbb{Z}).$$

- Since $H_1(T^2, \mathbb{Z}) = \langle a, b \rangle$, so $\phi_*(a) = c_1 a + c_2 b$ and $\phi_*(b) = d_1 a + d_2 b$ for $c_1, c_2, d_1, d_2 \in \mathbb{Z}$.
- Orientation-preserving homeomorphisms preserves algebraic intersection number, hence $\hat{i}(a,b) = \hat{i}(\phi_*(a),\phi_*(b)) = c_1d_2 c_2d_1$.

$$[\phi_*] = \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \hat{i}(\phi_*(a), b) & \hat{i}(\phi_*(b), b) \\ \hat{i}(-\phi_*(a), a) & \hat{i}(-\phi_*(b), a) \end{bmatrix} \in SL(2, \mathbb{Z}).$$

ullet This gives a homomrphism $\sigma: Mod(T^2) o SL(2,\mathbb{Z})$, $\sigma(f) = [\phi_*]$

- Since $H_1(T^2, \mathbb{Z}) = \langle a, b \rangle$, so $\phi_*(a) = c_1 a + c_2 b$ and $\phi_*(b) = d_1 a + d_2 b$ for $c_1, c_2, d_1, d_2 \in \mathbb{Z}$.
- Orientation-preserving homeomorphisms preserves algebraic intersection number, hence $\hat{i}(a,b) = \hat{i}(\phi_*(a),\phi_*(b)) = c_1d_2 c_2d_1$.

$$[\phi_*] = \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \hat{i}(\phi_*(a), b) & \hat{i}(\phi_*(b), b) \\ \hat{i}(-\phi_*(a), a) & \hat{i}(-\phi_*(b), a) \end{bmatrix} \in SL(2, \mathbb{Z}).$$

- ullet This gives a homomrphism $\sigma: \mathit{Mod}(\mathit{T}^2) o \mathit{SL}(2,\mathbb{Z})$, $\sigma(\mathit{f}) = [\phi_*]$
- To prove that σ is surjective:

- Since $H_1(T^2, \mathbb{Z}) = \langle a, b \rangle$, so $\phi_*(a) = c_1 a + c_2 b$ and $\phi_*(b) = d_1 a + d_2 b$ for $c_1, c_2, d_1, d_2 \in \mathbb{Z}$.
- Orientation-preserving homeomorphisms preserves algebraic intersection number, hence $\hat{i}(a,b) = \hat{i}(\phi_*(a),\phi_*(b)) = c_1d_2 c_2d_1$.

$$[\phi_*] = \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \hat{i}(\phi_*(a), b) & \hat{i}(\phi_*(b), b) \\ \hat{i}(-\phi_*(a), a) & \hat{i}(-\phi_*(b), a) \end{bmatrix} \in SL(2, \mathbb{Z}).$$

- ullet This gives a homomrphism $\sigma: \mathit{Mod}(\mathit{T}^2) o \mathit{SL}(2,\mathbb{Z})$, $\sigma(\mathit{f}) = [\phi_*]$
- To prove that σ is surjective:
- Two basic self homeomorphisms of T^2 , i.e, dehn twists along longitude and meridian of the torus, $\tau_L((e^{is},e^{it}))=(e^{i(s+t)},e^{it})$ and $\tau_M((e^{is},e^{it}))=(e^{is},e^{i(s+t)})$.

- Since $H_1(T^2, \mathbb{Z}) = \langle a, b \rangle$, so $\phi_*(a) = c_1 a + c_2 b$ and $\phi_*(b) = d_1 a + d_2 b$ for $c_1, c_2, d_1, d_2 \in \mathbb{Z}$.
- Orientation-preserving homeomorphisms preserves algebraic intersection number, hence $\hat{i}(a,b) = \hat{i}(\phi_*(a),\phi_*(b)) = c_1 d_2 - c_2 d_1$.

$$[\phi_*] = \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \hat{i}(\phi_*(a), b) & \hat{i}(\phi_*(b), b) \\ \hat{i}(-\phi_*(a), a) & \hat{i}(-\phi_*(b), a) \end{bmatrix} \in SL(2, \mathbb{Z}).$$

- ullet This gives a homomrphism $\sigma: Mod(T^2) o SL(2,\mathbb{Z})$, $\sigma(f) = \llbracket \phi_*
 rbrace$
- To prove that σ is surjective:
- Two basic self homeomorphisms of T^2 , i.e, dehn twists along longitude and meridian of the torus, $\tau_{I}((e^{is}, e^{it})) = (e^{i(s+t)}, e^{it})$ and $\tau_M((e^{is}, e^{it})) = (e^{is}, e^{i(s+t)}).$

Figure: 6. Dehn twist along M

- Since $H_1(T^2, \mathbb{Z}) = \langle a, b \rangle$, so $\phi_*(a) = c_1 a + c_2 b$ and $\phi_*(b) = d_1 a + d_2 b$ for $c_1, c_2, d_1, d_2 \in \mathbb{Z}$.
- Orientation-preserving homeomorphisms preserves algebraic intersection number, hence $\hat{i}(a,b) = \hat{i}(\phi_*(a),\phi_*(b)) = c_1 d_2 - c_2 d_1$.

$$[\phi_*] = \begin{bmatrix} c_1 & d_1 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \hat{i}(\phi_*(a), b) & \hat{i}(\phi_*(b), b) \\ \hat{i}(-\phi_*(a), a) & \hat{i}(-\phi_*(b), a) \end{bmatrix} \in SL(2, \mathbb{Z}).$$

- ullet This gives a homomrphism $\sigma: Mod(T^2) o SL(2,\mathbb{Z})$, $\sigma(f) = \llbracket \phi_*
 rbrace$
- To prove that σ is surjective:
- Two basic self homeomorphisms of T^2 , i.e, dehn twists along longitude and meridian of the torus, $\tau_{I}((e^{is}, e^{it})) = (e^{i(s+t)}, e^{it})$ and $\tau_M((e^{is}, e^{it})) = (e^{is}, e^{i(s+t)}).$

Figure: 6. Dehn twist along M

- au_L and au_M induces automorphisms au_{L*} and au_{M*} on $H_1(T^2,\mathbb{Z})$ with $[au_{L*}] = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $[au_{M*}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- $SL(2,\mathbb{Z})$ is generated by $[\tau_{L*}]$ and $[\tau_{M*}]$,so for any $M \in SL(2,\mathbb{Z})$ there is a homeomorphism say h which is compostion of powers of dehn twists along logitude and meridian of T^2 such that $\sigma(h) = M$
- To prove that σ is injective:

- au_L and au_M induces automorphisms au_{L*} and au_{M*} on $H_1(T^2,\mathbb{Z})$ with $[au_{L*}] = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $[au_{M*}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- $SL(2,\mathbb{Z})$ is generated by $[\tau_{L*}]$ and $[\tau_{M*}]$,so for any $M \in SL(2,\mathbb{Z})$ there is a homeomorphism say h which is compostion of powers of dehn twists along logitude and meridian of \mathcal{T}^2 such that $\sigma(h) = M$
- To prove that σ is injective:
- Let $f \in Mod(T^2)$, ϕ be the homeomorphism of T^2 representing f and suppose $\sigma(f) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

- au_L and au_M induces automorphisms au_{L*} and au_{M*} on $H_1(T^2,\mathbb{Z})$ with $[au_{L*}] = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $[au_{M*}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- $SL(2,\mathbb{Z})$ is generated by $[\tau_{L*}]$ and $[\tau_{M*}]$,so for any $M \in SL(2,\mathbb{Z})$ there is a homeomorphism say h which is compostion of powers of dehn twists along logitude and meridian of T^2 such that $\sigma(h) = M$
- To prove that σ is injective:
- Let $f \in Mod(T^2)$, ϕ be the homeomorphism of T^2 representing f and suppose $\sigma(f) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Let α and β be the simple closed curves corresponding to the elements (1, 0) and (0, 1) of $\pi_1(T^2)$, then $\phi(\alpha)$ is homotopic to α and $\phi(\beta)$ is homotopic to β .

- au_L and au_M induces automorphisms au_{L*} and au_{M*} on $H_1(T^2, \mathbb{Z})$ with $[au_{L*}] = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $[au_{M*}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- $SL(2,\mathbb{Z})$ is generated by $[\tau_{L*}]$ and $[\tau_{M*}]$,so for any $M \in SL(2,\mathbb{Z})$ there is a homeomorphism say h which is compostion of powers of dehn twists along logitude and meridian of T^2 such that $\sigma(h) = M$
- To prove that σ is injective:
- Let $f \in Mod(T^2)$, ϕ be the homeomorphism of T^2 representing f and suppose $\sigma(f) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Let α and β be the simple closed curves corresponding to the elements (1, 0) and (0, 1) of $\pi_1(T^2)$, then $\phi(\alpha)$ is homotopic to α and $\phi(\beta)$ is homotopic to β .
- We will use the following two lemmas to proceed further:

- au_L and au_M induces automorphisms au_{L*} and au_{M*} on $H_1(T^2,\mathbb{Z})$ with $[au_{L*}] = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $[au_{M*}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- $SL(2,\mathbb{Z})$ is generated by $[\tau_{L*}]$ and $[\tau_{M*}]$,so for any $M \in SL(2,\mathbb{Z})$ there is a homeomorphism say h which is compostion of powers of dehn twists along logitude and meridian of \mathcal{T}^2 such that $\sigma(h) = M$
- To prove that σ is injective:
- Let $f \in Mod(T^2)$, ϕ be the homeomorphism of T^2 representing f and suppose $\sigma(f) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Let α and β be the simple closed curves corresponding to the elements (1, 0) and (0, 1) of $\pi_1(T^2)$, then $\phi(\alpha)$ is homotopic to α and $\phi(\beta)$ is homotopic to β .
- We will use the following two lemmas to proceed further: **Lemma-1** Let α and β be two essential simple closed curves in a surface S. Then α is isotopic to β if and only if α is homotopic to β .

- au_L and au_M induces automorphisms au_{L*} and au_{M*} on $H_1(T^2,\mathbb{Z})$ with $[au_{L*}] = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $[au_{M*}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- $SL(2,\mathbb{Z})$ is generated by $[\tau_{L*}]$ and $[\tau_{M*}]$,so for any $M \in SL(2,\mathbb{Z})$ there is a homeomorphism say h which is compostion of powers of dehn twists along logitude and meridian of \mathcal{T}^2 such that $\sigma(h) = M$
- To prove that σ is injective:
- Let $f \in Mod(T^2)$, ϕ be the homeomorphism of T^2 representing f and suppose $\sigma(f) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Let α and β be the simple closed curves corresponding to the elements (1, 0) and (0, 1) of $\pi_1(T^2)$, then $\phi(\alpha)$ is homotopic to α and $\phi(\beta)$ is homotopic to β .
- We will use the following two lemmas to proceed further: **Lemma-1** Let α and β be two essential simple closed curves in a surface S. Then α is isotopic to β if and only if α is homotopic to β .

Lemma-2 Let S be any surface. If $F: S^1 \times I \to S$ is a smooth isotopy of simple closed curves, then there is an isotopy $H: S \times I \to S$ so that $H|_{S \times 0}$ is the identity and $H|_{F(S^1 \times 0) \times I} = F$.

• So upto isotopy, ϕ fixes α pointwise.

- So upto isotopy, ϕ fixes α pointwise.
- Let A be the annulus obtained from T^2 by cutting along α , then ϕ induces a homeomorphism $\overline{\phi}$ of A which fixes α , so $\overline{\phi}$ represents an element $\overline{f} \in Mod(A)$.

- So upto isotopy, ϕ fixes α pointwise.
- Let A be the annulus obtained from T^2 by cutting along α , then ϕ induces a homeomorphism $\overline{\phi}$ of A which fixes α , so $\overline{\phi}$ represents an element $\overline{f} \in Mod(A)$.
- Since $\phi(\beta)$ is isotopic to β in T^2 , $\overline{\phi}(\beta)$ and β are isotopic in A. So ρ $(\overline{f})=0$, where $\rho:Mod(A)\to\mathbb{Z}$ is isomorphism from proof of mapping class group of A.

- So upto isotopy, ϕ fixes α pointwise.
- Let A be the annulus obtained from T^2 by cutting along α , then ϕ induces a homeomorphism $\overline{\phi}$ of A which fixes α , so $\overline{\phi}$ represents an element $\overline{f} \in Mod(A)$.
- Since $\phi(\beta)$ is isotopic to β in T^2 , $\overline{\phi}(\beta)$ and β are isotopic in A. So ρ $(\overline{f})=0$, where $\rho:Mod(A)\to\mathbb{Z}$ is isomorphism from proof of mapping class group of A.
- $\overline{\phi}$ is isotopic to identity of A via an isotopy fixing ∂ A pointwise and hence ϕ is isotopic to identity.

References

- 1. A Primer on Mapping Class Groups by Benson Farb and Dan Margalit.
- 2. Algebraic Topology by Allen Hatcher.

Thank You.