Natural Language Processing

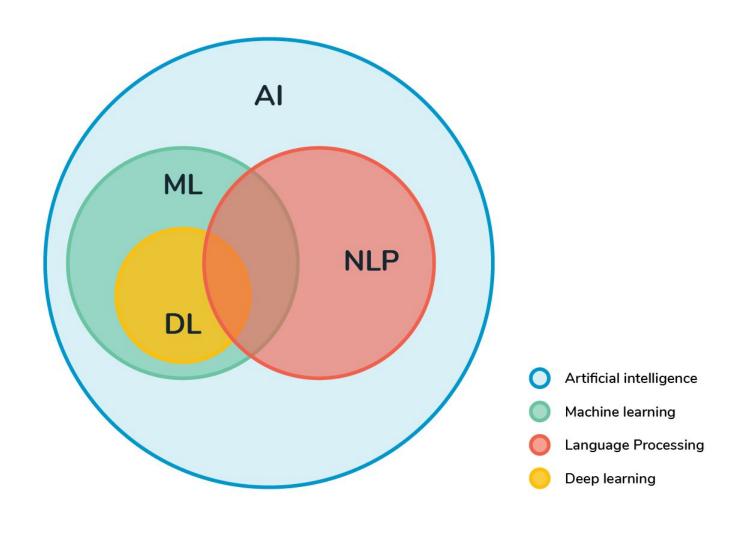
Miles to go

Natural Language

Spoken Language

Written Language

Vocal Language


Sign Language

Writing systems

- Alphabets (English)
- Logographies (Chinese, Egyptian hieroglyphs)
- Abugida (Brahmic, Tibetan etc.)

Directions:

- Top-down,
- Left-Right,
- Right to Left

Natural Language Processing

- Natural Language Understanding
 - Information Retrieval
 - Summarization
- Natural Language Generation
 - Automatic Legal Drafting
 - Summarization

Word, Phrase, Sentences, Discourse

- Part of Speech
- Morphology
- Sense Disambiguation
- Entity Identification

Morphology

Compute

Computer

Computing

Computerised

Computerization

0	1	2	3	192	25/2.3	- ///	7	1		5000	1000.5	1275	27.50
а	s	t	r	0	n	0	m	е	r	x	х	х	х
а	s	t	r	0	n	0	m	(i)	С	а	1	J	у

$$D_1 = \frac{1}{2^8} + \frac{1}{2^9} + \ldots + \frac{1}{2^{13}} = 0.0077$$

$$D_2 = \frac{1}{8} \times (\frac{1}{2^0} + \ldots + \frac{1}{2^{13-8}}) = 0.2461$$

$$D_3 = \frac{6}{8} \times (\frac{1}{2^0} + \dots + \frac{1}{2^{13-8}}) = 1.4766$$

$$D_4 = \frac{6}{14} \times (\frac{1}{2^0} + \ldots + \frac{1}{2^{13-8}}) = 0.8438$$

Edit distance
$$= 6$$

$$D_1 = \frac{1}{2^3} + \ldots + \frac{1}{2^9} = 0.2480$$

$$D_2 = \frac{1}{3} \times (\frac{1}{2^0} + \ldots + \frac{1}{2^{9-3}}) = 0.6615$$

$$D_3 = \frac{7}{3} \times (\frac{1}{2^0} + \ldots + \frac{1}{2^{9-3}}) = 4.6302$$

$$D_4 = \frac{7}{10} \times (\frac{1}{2^0} + \ldots + \frac{1}{2^{9-3}}) = 1.3891$$

Edit distance
$$= 5$$

$$y_{m-1}$$
, but $x_m \neq y_m$).

$$D_2(X,Y) = \frac{1}{m} \times \sum_{i=m}^n \frac{1}{2^{i-m}} \text{ if } m > 0, \quad \infty \text{ otherwise}$$

$$D_3(X,Y) = \frac{n-m+1}{m} \times \sum_{i=1}^n \frac{1}{2^{i-m}}$$
 if $m > 0$, ∞ otherwise

$$D_4(X,Y) = \frac{n-m+1}{n+1} \times \sum_{i=m}^{n} \frac{1}{2^{i-m}}$$

Table III. Retrieval Results for Various Stemmers (WSJ, queries 151–200)

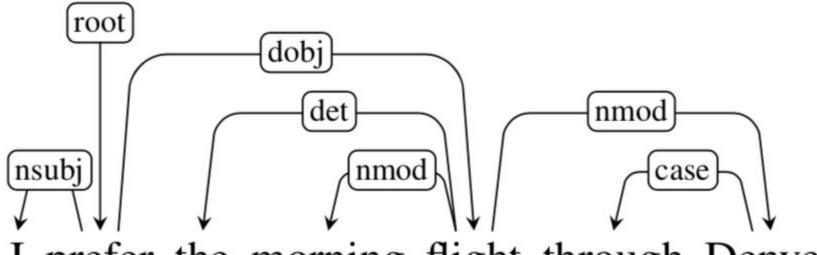

	No Stemming	$D_1 - 0.046$	$D_2 - 0.31$	$D_3 - 1.55$	$D_4 - 0.86$	Lovins	Porter	n-gram
Rel ret	3082	3235	3249	3268	3265	3318	3290	3171
P_{20}	0.4920	0.5020	0.4960	0.5090	0.5130	0.5030	0.5060	0.4960
Avg.P	0.3505	0.3732	0.3721	0.3796	0.3775	0.3746	0.3746	0.3595

Table VII. Performance of D_3 -Based Stemmer on the French LeMonde Corpus

	No Stemming	$D_3(1.15)$	$D_3(1.55)$	$D_3(2.10)$	Porter
Rel ret	516	540	538	538	540
P_{20}	0.2222	0.2611	0.2578	0.2522	0.2467
Avg.P	0.3987	0.4301	0.4334	0.4153	0.4284

Parsing

Parsing

I prefer the morning flight through Denver

Dependency Parsing

Basically, we represent **dependencies as a directed graph G= (V, A)** where V(set of vertices) represents words (and punctuation marks as well) in the sentence & A(set of arcs) represent the grammar relationship between elements of V.

A dependency parse tree is the directed graph mentioned above which has the below features:

- Root has no Incoming arcs (can only be Head in Head-Dependent pair)
- Vertices(except Root) should have only one incoming arc (Only one Parent/Head)
- A Unique path should exist between Root & each vertex in the tree.

Text representation

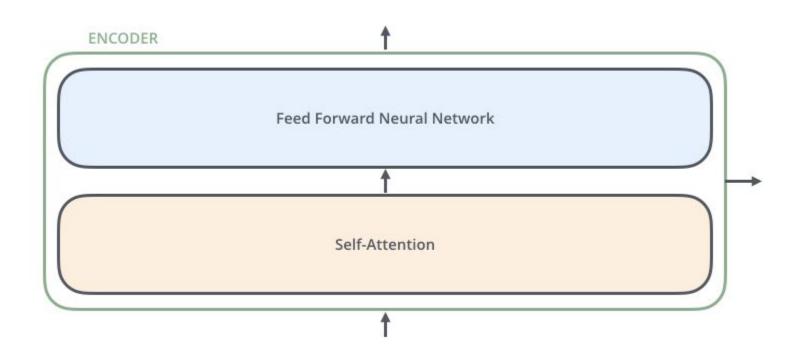
Text representation

TF-IDF

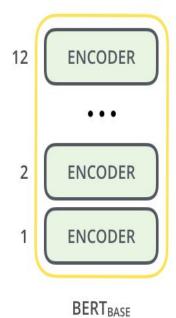
Latent semantic indexing

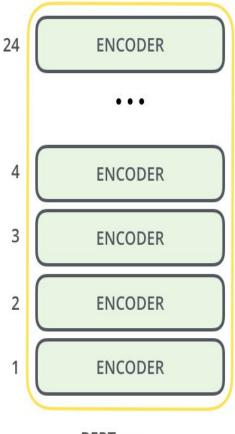
Word2Vec

Bidirectional Encoder Representations from Transformer


And many more...

Bidirectional Encoder Representations from Transformer (BERT)


- 1. BERT (Bidirectional Encoder Representations from Transformers) uses Transformer, an attention mechanism that "learns" contextual relations between words (or sub-words) in a text.
- 2. BERT is pre-trained on two NLP tasks:
 - a. Masked Language Modeling: Predict the masked word given the context words
 - b. Next Sentence Prediction: Given a sentence predict the next sentence.
- 3. As opposed to directional models, which read the text input sequentially (left-to-right or right-to-left), the Transformer encoder reads the entire sequence of words at once.
- 4. BERT is pre-trained on a large corpus of unlabelled text which includes the entire Wikipedia (2,500 million words) and Book Corpus (800 million words).


Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

BERT Architecture

BERT Architecture

BERTLARGE

BERT Architecture

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

		Dev F1 Score
First Layer	mbedding	91.0
Last Hidden Layer	12	94.9
Sum All 12 Layers	12 + + + + + + + + + + + + + + + + + + +	95.5
Second-to-Last Hidden Layer	11	95.6
Sum Last Four Hidden	12 + 11 + 10 + 10 + 10 + 10 + 10 + 10 +	95.9
Concat Last Four Hidden	9 10 11	96.1

Dev F1 Score

Challenges in Downstream tasks:

- Search Engines
- Hate Speech Detection
- Sentiment Analysis
- Question Answering
- Recommendation
- Summarization

Summarization

DATA

DUC 2002, DUC 2003 and DUC 2004

- 1. DUC 2002: 59 clusters of around 10 documents each (TREC collection)
- 2. DUC 2003: 30 clusters of about 10 documents each (TDT Datasets)
- 3. DUC 2004 50 clusters with 10 documents per cluster. (TDT Datasets)

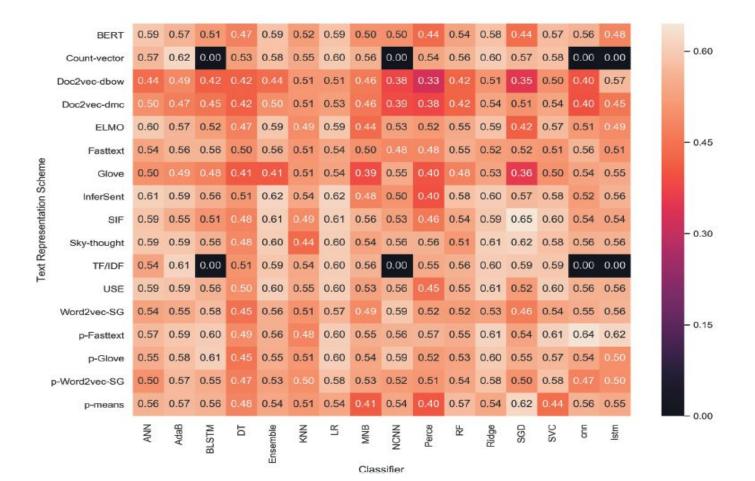

^{*}All three datasets include four manually written summaries per cluster.

Effect of pre-processing and post-processing steps on ROUGE-1 recall.

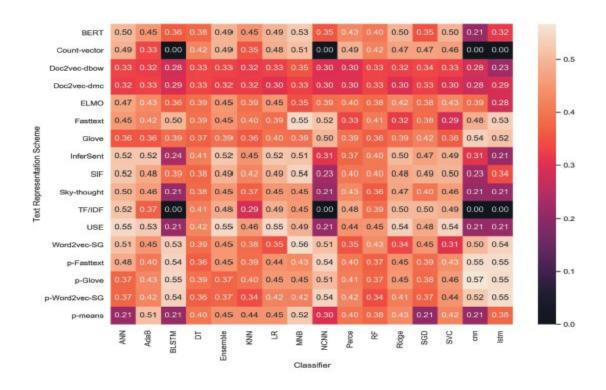
	System	No pre/post processing	Only stemming	Only stopword removal	Only redundancy removal	Stopword + Redundancy removal
DUC 2002	Centroid	0.41783	0.42001	0.42223	0.43157	0.44987
	Greedy-KL	0.40173	0.40537	0.41392	0.40962	0.41522
	LexRank	0.42733	0.42000	0.42292	0.44134	0.43289
	FreqSum	0.39247	0.38120	0.40480	0.38766	0.42522
DUC 2003	Centroid	0.33387	0.34222	0.34382	0.35237	0.36780
	Greedy-KL	0.31473	0.31263	0.33892	0.31592	0.33892
	LexRank	0.35643	0.34900	0.34292	0.36111	0.35689
	FreqSum	0.29316	0.30120	0.32748	0.30486	0.34335
DUC 2004	Centroid	0.35399	0.35104	0.34874	0.36541	0.37271
	Greedy-KL	0.31913	0.32215	0.33717	0.31866	0.34160
	LexRank	0.35356	0.34343	0.34453	0.36277	0.35377
	FreqSum	0.30776	0.31500	0.34816	0.31370	0.35851

Hate Speech Detection

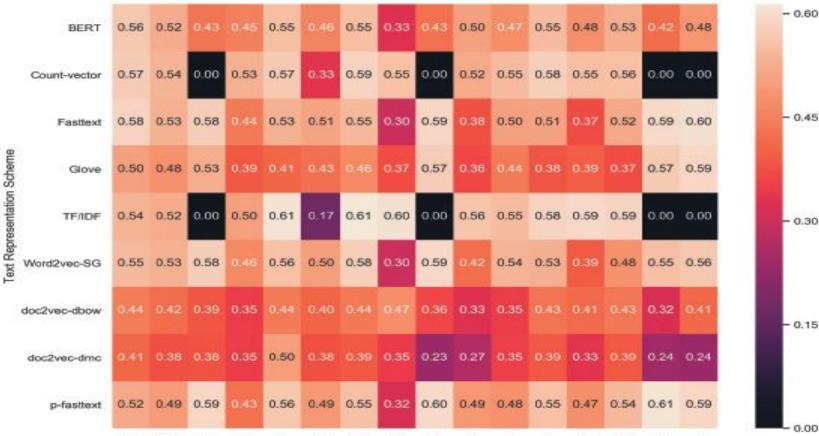
User Aggression Detection¹


NAG: Non-Aggressive

CAG: Covertly Aggressive

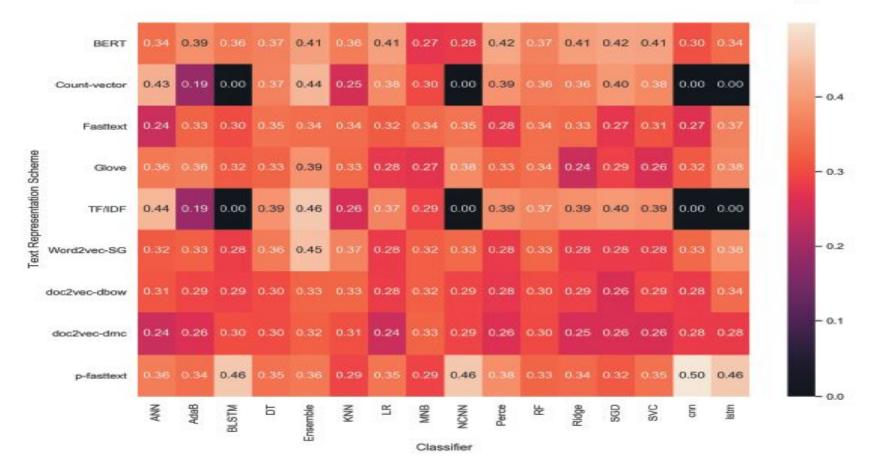

OAG: Overtly Aggressive

[1] R. Kumar, A. N. Reganti, A. Bhatia, and T. Maheshwari. Aggression-annotated Corpus of Hindi-English Code-mixed Data. In Proceedings of the 11th Language Resources and Evaluation Conference (LREC), Miyazaki, Japan, 2018.


Heatmap: Results on TRAC Facebook English Dataset

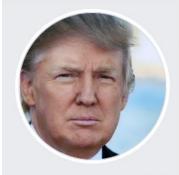
Heatmap: Results on TRAC Twitter English Dataset

Heatmap: TRAC Facebook Hindi Dataset



Heatmap: TRAC Twitter Hindi Dataset

JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE



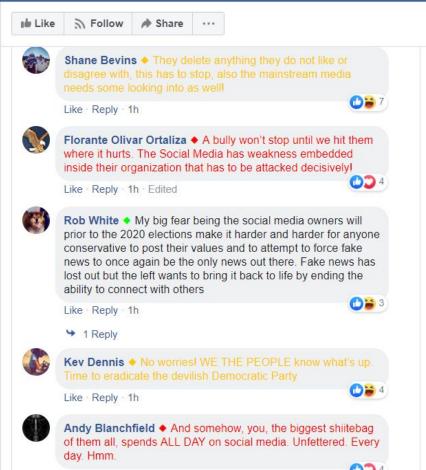
21

Home

Shop

Videos

Posts


About

Issues

Photos

Events

Community

Like - Reply - 1h

Browser Plugin

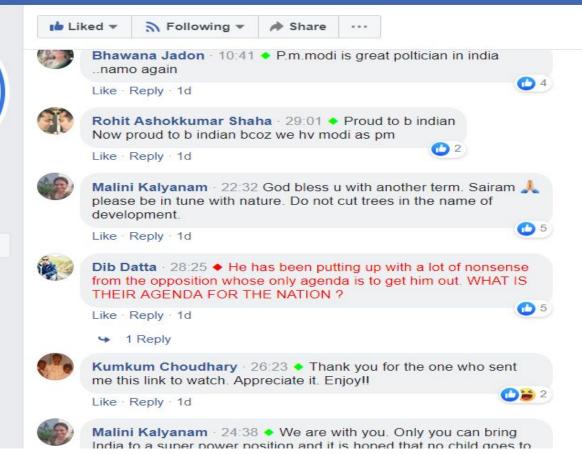
∃ate Visualization 3rowser Plugin

Narendra Modi @narendramodi

Home

About

Photos


Videos

Donate

Posts

YouTube

Events

Multilingual and Domain Specific

- Japanese Patent retrieval task
- Arabian Text summarization
- Bengali news recommendation systems
- English Chinese cross lingual Information retrieval systems

TREC, NIST, USA

NTCIR, Japan

FIRE, India

Evaluation

Training data (human annotated data)

+

Evaluation Metrics

+

Test and Validation Data

Its a round the year process.

Evaluation

TREC, NIST, USA

CLEF, EU

NTCIR, Japan

FIRE, India