Dr. Sayan Chakraborty

Assistant Professor, IAI TCG CREST

Research Interest

  • Functional analysis
  • Operator algebra
  • Noncommutative geometry
  • K-theory
  • Quantum Information

Educational Qualification

  • Ph.D. in Mathematics, University of Muenster, Germany
  • M.Sc. in Mathematics, IIT Bombay.
  • B.Sc. Honours in Mathematics, St. Xaviers College, Kolkata.

Awards and Fellowships


  • INSPIRE Faculty award
  • NPDF (National Post-doctoral Fellow)
  • NBHM Post-doc fellowship
  • DAAD fellowship to visit University of Göttingen, Germany
  • CSIR NET

Further details are available in my Home Page.

Publications

 

  1. Symmetrized non-commutative tori revisited. Journal of Noncommutative Geometry 2023. [arXiv]

  2. Isomorphism and morita equivalence classes for crossed products of irrational rotation algebras by cyclic subgroups of SL_2(\mathbb{Z}) (with Bönicke, He, and  Liao),  Journal of Functional Analysis 275 (2018), Issue 11, 3208-3243. [arXiv]

  3. Tracing cyclic homology pairings under twisting of graded algebras (with Yamashita), Lett. Math. Phys (2019)[arXiv]

  4. Metaplectic transformations and finite group actions on noncommutative tori (with Luef), Journal of Operator Theory, Volume 82, Issue 1, 2019, pp. 147-172. [arXiv]

  5. Some remarks on K_0 of noncommutative tori, Math. Scand., Vol 126 No 2 (2020), 387-400[arXiv]

  6. A note on crossed products of rotation algebras (with Bönicke, He, and  Liao), Journal of Operator Theory, Volume 85, Issue 2, 2021 pp. 391-402[arXiv]

  7. Tracing projective modules over noncommutative orbifolds, to appear in the  Journal of Noncommutative Geometry. **[arXiv]

  8. Higher dimensional Bott classes and the stability of rotation relations (with Hua), to appear in Indiana University Mathematics Journal[arXiv]

  9. Appendix to: C. Farsi and N. Watling, Symmetrized noncommutative tori. Math. Ann. 296 (1993), no. 4, 739–741 (with Farsi and Watling), Mathematische Annalen[Online First]

  10. K-theory of non-commutative Bernoulli Shifts (with Echterhoff, Kranz, and Nishikawa),  Mathematische Annalen[Online First] [arXiv]

  11. Smooth Connes–Thom isomorphism, cyclic homology, and equivariant quantisation (with Tang and Yao), to appear in Communications in Mathematical Physics[arXiv]

Contact: sayan.chakraborty@tcgcrest.org